Environmental Fluid Mechanics

, Volume 17, Issue 4, pp 695–714 | Cite as

Influence of the secondary motions on pollutant mixing in a meandering open channel flow

  • Ignacio J. Moncho-Esteve
  • Frederik Folke
  • Manuel García-Villalba
  • Guillermo Palau-Salvador
Original Article

Abstract

This paper presents large eddy simulation of turbulent flow in a meandering open channel with smooth wall and rectangular cross-section. The Reynolds number based on the channel height is 40,000 and the aspect ratio of the cross-section is 4.48. The depth-averaged mean stream-wise velocity agree well to experimental measurements. In this specific case, two interacting cells are formed that swap from one bend to the other. Transport and mixing of a pollutant is analysed using three different positions of release, e.g. on the inner bank, on the outer bank and on the centre of the cross section. The obtained depth-average mean concentration profiles are reasonably consistent with available experimental data. The role of the secondary motions in the mixing processes is the main focus of the discussion. It is found that the mixing when the scalar is released on the centre of the cross-section is stronger and faster than the mixing of the scalar released on the sides. When the position of release is close to a bank side, the mixing is weaker and a clear concentration of scalar close to the corresponding side-wall can be observed in both cases.

Keywords

Large Eddy simulation Pollutant mixing River flow Turbulence 

References

  1. 1.
    Julien PY, Duan JG (2005) Numerical simulation of the inception of channel meandering. Earth Surf Process Landf J Br Geomorphol Res Group 30:1093–1110CrossRefGoogle Scholar
  2. 2.
    Boussinesq J (1868) Mémoire sur l’influence des frottements dans les mouvements reguliers des fluids. J Math Pures Appl 13:377–424Google Scholar
  3. 3.
    Thomson J (1876) On the origin of windings of rivers in alluvial plains, with remarks on the flow of water round bends in pipes. Proc R Soc Lond 25:5–8CrossRefGoogle Scholar
  4. 4.
    Booij R, Tukker J (1996) 3-Dimensional laser-doppler measurements in a curved flume. In: Adrian RJ, Durão DFG, Durst F, Heitor MV, Maeda M, Whitelaw JH (eds) Developments in laser techniques and applications to fluid mechanics. Springer, Berlin, pp 98–114CrossRefGoogle Scholar
  5. 5.
    Muto Y (1997) Turbulent flow in two-stage meandering channels. Ph.D. The University of BradfordGoogle Scholar
  6. 6.
    Shiono K, Muto Y (1998) Complex flow mechanisms in compound meandering channels with overbank flow. J Fluid Mech 376:221–261. doi:10.1017/S0022112098002869 CrossRefGoogle Scholar
  7. 7.
    Tominaga A, Nagao M, Nezu I (1999) Flow structure and momentum transport processes in curved open-channels with vegetation. In: Proceedings of 28th IAHR CongressGoogle Scholar
  8. 8.
    Booij R (2003) Measurements and large eddy simulations of the flows in some curved flumes. J Turbul 4:N8. doi:10.1088/1468-5248/4/1/008 CrossRefGoogle Scholar
  9. 9.
    Jia Y, Blanckaert K, Wang SS (2001) Numerical simulation of secondary currents in curved channels. In: Proceedings of 8th FMTM-CongressGoogle Scholar
  10. 10.
    Mockmore C (1943) Flow around bends in stable channels. Trans ASCE 3:334Google Scholar
  11. 11.
    Blanckaert K, De Vriend HJ (2004) Secondary flow in sharp open-channel bends. J Fluid Mech 498:353–380. doi:10.1017/S0022112003006979 CrossRefGoogle Scholar
  12. 12.
    Balen WV, Uijttewaal WSJ, Blanckaert K (2009) Large-eddy simulation of a mildly curved open-channel flow. J Fluid Mech 630:413–442. doi:10.1017/S0022112009007277 CrossRefGoogle Scholar
  13. 13.
    van Balen W, Blanckaert K, Uijttewaal WSJ (2010) Analysis of the role of turbulence in curved open-channel flow at different water depths by means of experiments, LES and RANS. J Turbul 11:N12. doi:10.1080/14685241003789404 CrossRefGoogle Scholar
  14. 14.
    Christensen HB (1999) Secondary turbulent flow in an infinte bend. Iahr Symp. River Coast. Estuar. MorphodynamicsGoogle Scholar
  15. 15.
    Blanckaert K, Graf WH (2004) Momentum transport in sharp open-channel bends. J Hydraul Eng 130:186–198. doi:10.1061/(ASCE)0733-9429(2004)130:3(186) CrossRefGoogle Scholar
  16. 16.
    Stoesser T, Ruether N, Olsen NRB (2010) Calculation of primary and secondary flow and boundary shear stresses in a meandering channel. Adv Water Resour 33:158–170. doi:10.1016/j.advwatres.2009.11.001 CrossRefGoogle Scholar
  17. 17.
    Blanckaert K, Duarte A, Chen Q, Schleiss AJ (2012) Flow processes near smooth and rough (concave) outer banks in curved open channels. J Geophys Res Earth Surf 117:F04020. doi:10.1029/2012JF002414 CrossRefGoogle Scholar
  18. 18.
    Vaghefi M, Akbari M, Fiouz AR (2016) An experimental study of mean and turbulent flow in a 180 degree sharp open channel bend: secondary flow and bed shear stress. KSCE J Civ Eng 20:1582–1593. doi:10.1007/s12205-015-1560-0 CrossRefGoogle Scholar
  19. 19.
    Kang S, Lightbody A, Hill C, Sotiropoulos F (2011) High-resolution numerical simulation of turbulence in natural waterways. Adv Water Resour 34:98–113. doi:10.1016/j.advwatres.2010.09.018 CrossRefGoogle Scholar
  20. 20.
    Engel FL, Rhoads BL (2016) Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend. Earth Surf Process Landf 41:1211–1226. doi:10.1002/esp.3895 CrossRefGoogle Scholar
  21. 21.
    Khosronejad A, Hansen AT, Kozarek JL, Guentzel K, Hondzo M, Guala M, Wilcock P, Finlay JC, Sotiropoulos F (2016) Large eddy simulation of turbulence and solute transport in a forested headwater stream. J Geophys Res Earth Surf 121:2014JF003423. doi:10.1002/2014JF003423 CrossRefGoogle Scholar
  22. 22.
    Mera I, Franca MJ, Anta J, Peña E (2015) Turbulence anisotropy in a compound meandering channel with different submergence conditions. Adv Water Resour 81:142–151. doi:10.1016/j.advwatres.2014.10.012 CrossRefGoogle Scholar
  23. 23.
    Termini D (2015) Momentum transport and bed shear stress distribution in a meandering bend: experimental analysis in a laboratory flume. Adv Water Resour 81:128–141. doi:10.1016/j.advwatres.2015.01.005 CrossRefGoogle Scholar
  24. 24.
    Chang Y (1971) Lateral mixing in meandering channels. Ph.D., The University of IowaGoogle Scholar
  25. 25.
    Fischer HB (1969) The effect of bends on dispersion in streams. Water Resour Res 5:496–506. doi:10.1029/WR005i002p00496 CrossRefGoogle Scholar
  26. 26.
    Rozovskii IL (1957) Flow of water in bends of open channels. Kiev Acad. Sci. Ukr. SSR Isr. Program Sci. Transl. Wash. DC Available Off. Tech. Serv. US Dept Commer. 1957 Ie Jerus. 1961Google Scholar
  27. 27.
    Taylor G (1954) The dispersion of matter in turbulent flow through a pipe. Proc R Soc Lond Math Phys Eng Sci 223:446–468. doi:10.1098/rspa.1954.0130 CrossRefGoogle Scholar
  28. 28.
    Elder JW (1959) The dispersion of marked fluid in turbulent shear flow. J Fluid Mech 5:544–560. doi:10.1017/S0022112059000374 CrossRefGoogle Scholar
  29. 29.
    Boxall JB, Guymer I (2003) Analysis and prediction of transverse mixing coefficients in natural channels. J Hydraul Eng 129:129–139. doi:10.1061/(ASCE)0733-9429(2003)129:2(129) CrossRefGoogle Scholar
  30. 30.
    Demuren AO, Rodi W (1984) Calculation of turbulence-driven secondary motion in non-circular ducts. J Fluid Mech 140:189–222. doi:10.1017/S0022112084000574 CrossRefGoogle Scholar
  31. 31.
    Sharma H, Ahmad Z (2014) Transverse mixing of pollutants in streams: a review. Can J Civ Eng 41:472–482. doi:10.1139/cjce-2013-0561 CrossRefGoogle Scholar
  32. 32.
    Booij R (1995) Eddy laser Doppler measurements and turbulence modeling of the flow in a curved flume. In: Proceedings of 1995 ASMEJSME Fluid Eng 6 Th Int Laser Anemometry Conference on Laser Anemometry Hilton Head SCGoogle Scholar
  33. 33.
    Stoesser T, Ruether N, Olsen N (2008) Near-bed flow behavior in a meandering channel. In: RiverFlow 2008 4th International Conference on Fluvial HydraulicsGoogle Scholar
  34. 34.
    Kang S, Sotiropoulos F (2011) Flow phenomena and mechanisms in a field-scale experimental meandering channel with a pool-riffle sequence: insights gained via numerical simulation. J Geophys Res Earth Surf 116:F03011. doi:10.1029/2010JF001814 Google Scholar
  35. 35.
    Xu D, Bai Y, Munjiza A, Avital E, Williams J (2013) Investigation on the characteristics of turbulent flow in a meandering open channel bend using large eddy simulation. In: Proceedings of 2013 IAHR World CongressGoogle Scholar
  36. 36.
    Demuren AO, Rodi W (1986) Calculation of flow and pollutant dispersion in meandering channels. J Fluid Mech 172:63–92. doi:10.1017/S0022112086001659 CrossRefGoogle Scholar
  37. 37.
    Breuer M, Rodi W (1994) Large-eddy simulation of turbulent flow through a straight square duct and a 180° bend. In: Voke PR, Kleiser L, Chollet J-P (eds) Direct large-eddy simulation I. Springer, Netherlands, pp 273–285CrossRefGoogle Scholar
  38. 38.
    Hinterberger C (2004) Dreidimensionale und tiefengemittelte large-eddy-simulation von Flachwasserströmungen. Ph.D., University of KarlsruheGoogle Scholar
  39. 39.
    Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21:1525–1532. doi:10.2514/3.8284 CrossRefGoogle Scholar
  40. 40.
    Stone H (1968) Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J Numer Anal 5:530–558. doi:10.1137/0705044 CrossRefGoogle Scholar
  41. 41.
    Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 CrossRefGoogle Scholar
  42. 42.
    Hinterberger C, Fröhlich J, Rodi W (2007) Three-dimensional and depth-averaged large-eddy simulations of some shallow water flows. J Hydraul Eng. doi:10.1061/(ASCE)0733-9429(2007)133:8(857) Google Scholar
  43. 43.
    Zhu J (1991) A low-diffusive and oscillation-free convection scheme. Commun Appl Numer Methods 7:225–232. doi:10.1002/cnm.1630070307 CrossRefGoogle Scholar
  44. 44.
    Denev JA, Fröhlich J, Bockhorn H (2009) Large eddy simulation of a swirling transverse jet into a crossflow with investigation of scalar transport. Phys Fluids 21:015101. doi:10.1063/1.3054148 CrossRefGoogle Scholar
  45. 45.
    Palau-Salvador G, García-Villalba M, Rodi W (2011) Scalar transport from point sources in the flow around a finite-height cylinder. Environ Fluid Mech 11:611–625. doi:10.1007/s10652-010-9199-3 CrossRefGoogle Scholar
  46. 46.
    Fröhlich J, García-Villalba M, Rodi W (2007) Scalar mixing and large-scale coherent structures in a turbulent swirling jet. Flow Turbul Combust 80:47–59. doi:10.1007/s10494-007-9121-3 CrossRefGoogle Scholar
  47. 47.
    García-Villalba M, Palau-Salvador G, Rodi W (2014) Forced convection heat transfer from a finite-height cylinder. Flow Turbul Combust 93:171–187. doi:10.1007/s10494-014-9543-7 CrossRefGoogle Scholar
  48. 48.
    Blanckaert K, Graf WH (2001) Mean flow and turbulence in open-channel bend. J Hydraul Eng 127:835–847. doi:10.1061/(ASCE)0733-9429(2001)127:10(835) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Ignacio J. Moncho-Esteve
    • 1
  • Frederik Folke
    • 2
    • 4
  • Manuel García-Villalba
    • 3
  • Guillermo Palau-Salvador
    • 1
  1. 1.Hydraulic Division, Department of Rural and Agrifood EngineeringUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Institute for HydromechanicsKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Bioengineering and Aerospace Engineering DepartmentUniversidad Carlos III de MadridLeganésSpain
  4. 4.Federal Waterways Engineering and Research Institute (BAW)KarlsruheGermany

Personalised recommendations