Environmental Fluid Mechanics

, Volume 16, Issue 3, pp 603–633 | Cite as

Simulations of the flow in the Mahakam river–lake–delta system, Indonesia

  • Chien Pham VanEmail author
  • Benjamin de Brye
  • Eric Deleersnijder
  • A. J. F. Hoitink
  • Maximiliano Sassi
  • Benoit Spinewine
  • Hidayat Hidayat
  • Sandra Soares-Frazão
Original Article


Large rivers often present a river–lakedelta system, with a wide range of temporal and spatial scales of the flow due to the combined effects of human activities and various natural factors, e.g., river discharge, tides, climatic variability, droughts, floods. Numerical models that allow for simulating the flow in these river–lakedelta systems are essential to study them and predict their evolution under the impact of various forcings. This is because they provide information that cannot be easily measured with sufficient temporal and spatial detail. In this study, we combine one-dimensional sectional-averaged (1D) and two-dimensional depth-averaged (2D) models, in the framework of the finite element model SLIM, to simulate the flow in the Mahakam river–lakedelta system (Indonesia). The 1D model representing the Mahakam River and four tributaries is coupled to the 2D unstructured mesh model implemented on the Mahakam Delta, the adjacent Makassar Strait, and three lakes in the central part of the river catchment. Using observations of water elevation at five stations, the bottom friction for river and tributaries, lakes, delta, and adjacent coastal zone is calibrated. Next, the model is validated using another period of observations of water elevation, flow velocity, and water discharge at various stations. Several criteria are implemented to assess the quality of the simulations, and a good agreement between simulations and observations is achieved in both calibration and validation stages. Different aspects of the flow, i.e., the division of water at two bifurcations in the delta, the effects of the lakes on the flow in the lower part of the system, the area of tidal propagation, are also quantified and discussed.


Mahakam River Coupled 1D/2D model SLIM River–lakedelta system 



This study was conducted under the auspices of the project “Taking up the challenges of multi-scale marine modelling” which is funded by the Communauté Française de Belgique under contract ARC 10/15-028 (Actions de Recherche Concertées) with the aim of developing and using SLIM. Computational resources have been provided by the high-performance computing facilities of the Université catholique de Louvain (CISM/UCL) and the Consortium des Equipements de Calcul Intensif en Fédération Wallonie Bruxelles (CECI) funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS). Eric Deleersnijder and Sandra Soares-Frazão are honorary research associates with this institution.


  1. 1.
    Peters DL, Buttle JM (2010) The effects of flow regulation and climatic variability on obstructed drainage and reverse flow contribution in a Northern river–lake–Delta complex, Mackenzie basin headwaters. River Res Appl 26:1065–1089CrossRefGoogle Scholar
  2. 2.
    de Brye B, Schellen S, Sassi M, Vermeulen B, Karna T, Deleersijder E, Hoitink T (2011) Preliminary results of a finite-element, multi-scale model of the Mahakam Delta (Indonesia). Ocean Dyn 61:1107–1120CrossRefGoogle Scholar
  3. 3.
    de Brye B, de Brauwere A, Gourgue O, Kärnä T, Lambrechts J, Comblen R, Deleersnijder E (2010) A finite-element, multi-scale model of the Scheldt tributaries, river, estuary and ROFI. Coast Eng 57:850–863CrossRefGoogle Scholar
  4. 4.
    Wu W, Li Y (1992) One- and two-dimensional nesting mathematical model for river flow and sedimentation. The Fifth International Symposium on River Sedimentation, Karlsruhe, pp 547–554Google Scholar
  5. 5.
    Zhang SQ (1999) One-D and two-D combined model for estuary sedimentation. Int J Sedim Res 14(1):37–45Google Scholar
  6. 6.
    Martini P, Carniello L, Avanzi C (2004) Two dimensional modelling of flood flows and suspended sediment transport: the case of Brenta river, Veneto (Italy). Nat Hazards Earth Syst Sci 4:165–181CrossRefGoogle Scholar
  7. 7.
    Cook A, Merwade V (2009) Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. J Hydrol 377:131–142CrossRefGoogle Scholar
  8. 8.
    Pietrzak J, Deleersnijder E, Schröter J (2005) Special issue: the second international workshop on unstructured mesh numerical modelling of coastal, shelf and ocean flows Delft, The Netherlands, September 23–25, 2003. Ocean Model 10(1–2):1–3CrossRefGoogle Scholar
  9. 9.
    Deleersnijder E, Legat V, Lermusiaux PFJ (2010) Multi-scale modeling of coastal, shelf and global ocean dynamic. Ocean Dyn 60:1357–1359CrossRefGoogle Scholar
  10. 10.
    Lambrechts J, Hanert E, Deleersnijder E, Bernard P-E, Legat V, Remacle J-F, Wolanski E (2008) A multi-scale model of the hydrodynamics of the whole Great Barrier Reef. Estuar Coast Shelf Sci 79:143–151CrossRefGoogle Scholar
  11. 11.
    Allen GP, Chambers JLC (1998) Sedimentation in the modern and Miocene Mahakam delta. Indonesian Petroleum Association, JakartaGoogle Scholar
  12. 12.
    Hidayat H, Hoekman DH, Vissers MAM, Hoitink AJF (2012) Flood occurrence mapping of the middle Mahakam lowland area using satellite radar. Hydrol Earth Syst Sci 16:1805–1816CrossRefGoogle Scholar
  13. 13.
    Roberts HH, Sydow J (2003) Later quaternary stratigraphy and sedimentology of the offshore Mahakam delta, East Kalimantan (Indonesia). Trop Deltas Southeast Asia Sedimentol Stratigr Pet Geol 76:125–145CrossRefGoogle Scholar
  14. 14.
    Storms JEA, Hoogendoorn RM, Dam RAC, Hoitink AJF, Koonenberg SB (2005) Late-Holocene evolution of the Mahakam delta, East Kalimantan, Indonesia. Sed Geol 180:149–166CrossRefGoogle Scholar
  15. 15.
    Hall R, Cloke IR, Nur’aini S (2009) The North Makassar Straits: what lies beneath? Pet Geosci 15:147–158CrossRefGoogle Scholar
  16. 16.
    Susanto RD, Ffield A, Gordon AL, Adi TR (2012) Variability of Indonesian throughflow within Makassar Strait, 2004-2009. J Geophys Res 117:C09013. doi: 10.1029/2012JC008096 CrossRefGoogle Scholar
  17. 17.
    Adcroft A, Marshall D (1998) How slippery are piecewise-constant coastlines in numerical ocean models? Tellus 50A(1):95–108CrossRefGoogle Scholar
  18. 18.
    Edmonds DA, Slingerland RL (2010) Significant effect of sediment cohesive on delta morphology. Nat Geosci 3:105–109CrossRefGoogle Scholar
  19. 19.
    Budhiman S, Salama SM, Vekerdy Z, Verhoef W (2012) Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion. ISPRS J Photogramm Remote Sens 68:157–169CrossRefGoogle Scholar
  20. 20.
    Budiyanto F, Lestari (2013) Study of metal contaminant level in the Mahakam Delta: sediment and dissolved metal perpectives. J Coast Dev 16(2):147–157Google Scholar
  21. 21.
    Salahuddin Lambiase JJ (2013) Sediment dynamics and depositional systems of the Mahakam Delta, Indonesia: ongoing delta abandonment on a tide-dominated coast. J Sediment Res 83:503–521CrossRefGoogle Scholar
  22. 22.
    Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164CrossRefGoogle Scholar
  23. 23.
    Darby SE, Thorne CR (1996) Predicting stage-discharge curves in channels with bank vegetation. J Hydraul Eng 122(10):583–586CrossRefGoogle Scholar
  24. 24.
    Kärnä T, de Brye B, Gourgue O, Lambrechts J, Comblen R, Legat V, Deleersnijder E (2011) A fully implicit wetting-drying method for DG-FEM shallow water models, with an application to the Scheldt Estuary. Comput Methods Appl Mech Eng 200:509–524CrossRefGoogle Scholar
  25. 25.
    Comblen R, Lambrechts J, Remacle J-F, Legat V (2010) Practical evaluation of five partly discontinuous finite element pairs for the non-conservative shallow water equations. Int J Numer Methods Fluids 63:701–724Google Scholar
  26. 26.
    Toro E (1997) Riemann solvers and numerical methods for fluid dynamics, a practical introduction. Springer, BerlinCrossRefGoogle Scholar
  27. 27.
    Sherwin S, Formaggia L, Peiro J (2003) Computational modelling of 1D blood flow with variable mechanical properties and its applications to the simulation of wave propagation in the human arterial system. J Numer Methods Fluids 43:673–700CrossRefGoogle Scholar
  28. 28.
    Sassi M, Hoitink AJF, de Brye B, Vermeulen B, Deleersnijder E (2011) Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta. Ocean Dyn 61:2211–2228CrossRefGoogle Scholar
  29. 29.
    Lambrechts J, Comblen R, Legat V, Geuzaine C, Remacle J-F (2008) Multiscale mesh generation on the phere. Ocean Dyn 58:461–473CrossRefGoogle Scholar
  30. 30.
    Geuzaine C, Remacle J-F (2009) GMSH: a finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331CrossRefGoogle Scholar
  31. 31.
    Legrand S, Deleersnijder E, Hanert E, Legat V, Wolanski E (2006) High-resolution unstructured meshes for hydrodynamic models of the Great Barrier Reef, Australia. Estuar Coast Shelf Sci 68:36–46CrossRefGoogle Scholar
  32. 32.
    Legrand S, Deleersnijder E, Delhez EJM, Legat V (2007) Unstructured anisotropic mesh generation for the Northwestern European continental shelf, the continental slope and the neighbouring ocean. Cont Shelf Res 27:1344–1356CrossRefGoogle Scholar
  33. 33.
    Mandang I, Yanagi T (2008) Tide and tidal current in the Mahakam Estuary, East Kalimantan, Indonesia. Coast Mar Sci 32(1):1–8Google Scholar
  34. 34.
    Egbert GD, Bennet AF, Foreman MGG (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res 99(C12):24821–24852CrossRefGoogle Scholar
  35. 35.
    Haidvogel DB, McWilliams JC, Gent PR (1991) Boundary current separation in a quasigeostrophic, eddy-resolving ocean circulation model. J Phys Oceanogr 22:882–902CrossRefGoogle Scholar
  36. 36.
    Legates DR, McCabe JGJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241CrossRefGoogle Scholar
  37. 37.
    Sassi M, Hoitink AJF, Vermeulen B, Hidayat H (2013) Sediment discharge division at two tidally influenced river bifurcations. Water Resour Res 49(4):2119–2134CrossRefGoogle Scholar
  38. 38.
    Kleinhans MG, Jagers HRA, Mosselman E, Sloff CJ (2008) Bifurcation dynamics and avulsion duration in meandering rivers by one-dimensional and three-dimensional models. Water Resour Res 44:W08454. doi: 10.1029/2007WR005912 Google Scholar
  39. 39.
    Shih SF, Rahi GS (1982) Seasonal variation of Manning’s roughness coefficient in a subtropical marsh. Trans ASAF 25(1):116–119CrossRefGoogle Scholar
  40. 40.
    Bao W-M, Zhang Z-Q, Qu S-M (2009) Dynamic Correction of Roughness in the Hydrodynamic Model. J Hydrodyn 21(2):255–263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Chien Pham Van
    • 1
    • 2
    Email author
  • Benjamin de Brye
    • 3
  • Eric Deleersnijder
    • 4
    • 5
  • A. J. F. Hoitink
    • 6
  • Maximiliano Sassi
    • 7
  • Benoit Spinewine
    • 1
  • Hidayat Hidayat
    • 6
  • Sandra Soares-Frazão
    • 1
  1. 1.Institute of Mechanics, Materials and Civil Engineering (IMMC)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Faculty of Hydrology and Water ResourcesThuyloi UniversityHanoiViet Nam
  3. 3.Axis Park Louvain-la-NeuveFree Field TechnologiesMont-Saint-GuibertBelgium
  4. 4.Institute of Mechanics, Materials and Civil Engineering (IMMC) & Earth and Life Institute (ELI)Université catholique de LouvainLouvain-la-NeuveBelgium
  5. 5.Delft Institute of Applied Mathematics (DIAM)Delft University of TechnologyDelftThe Netherlands
  6. 6.Hydrology and Quantitative Water Management Group, Department of Environmental SciencesWageningen UniversityWageningenThe Netherlands
  7. 7.Royal Netherlands Institute for Sea Research, NIOZDen BurgThe Netherlands

Personalised recommendations