Environmental Fluid Mechanics

, Volume 15, Issue 4, pp 753–770 | Cite as

Towards aeraulic simulations at urban scale using the lattice Boltzmann method

  • Christian Obrecht
  • Frédéric Kuznik
  • Lucie Merlier
  • Jean-Jacques Roux
  • Bernard Tourancheau
Original Article


The lattice Boltzmann method (LBM) is an innovative approach in computational fluid dynamics (CFD). Due to the underlying lattice structure, the LBM is inherently parallel and therefore well suited for high performance computing. Its application to outdoor aeraulic studies is promising, e.g. applied on complex urban configurations, as an alternative approach to the commonplace Reynolds-averaged Navier–Stokes and large eddy simulation methods based on the Navier–Stokes equations. Emerging many-core devices, such as graphic processing units (GPUs), nowadays make possible to run very large scale simulations on rather inexpensive hardware. In this paper, we present simulation results obtained using our multi-GPU LBM solver. For validation purpose, we study the flow around a wall-mounted cube and show agreement with previously published experimental results. Furthermore, we discuss larger scale flow simulations involving nine cubes which demonstrate the practicability of CFD simulations in building external aeraulics.


Computational fluid dynamics Lattice Boltzmann method Urban flow Large eddy simulation High-performance computing 

List of symbols


Smagorinsky constant


Speed of sound (\(\hbox {m}\,\hbox {s}^{-1}\))

\(\delta t\)

Time step (s)

\(\delta x\)

Mesh size (m)


Energy (J)


External force


Distribution function


Height of the cube (m)


Height of the channel (m)


Fluid momentum (\(\hbox {kg}\,\hbox {m}^{-2}\,\hbox {s}^{-1}\))


Mass of the particle (kg)

\({{\mathsf {P}}}\)

Strain rate tensor


Related to the strain rate tensor


Mean pressure (Pa)


Heat flux (\(\hbox {W}\,\hbox {m}^{-2}\))

\(\hbox {Re}\)

Reynolds number (–)


Averaged pressure relative variation (–)


Relaxation rate


Turn-over time (s)


Maximum inlet velocity (\(\hbox {m}\,\hbox {s}^{-1}\))


Fluid velocity (\(\hbox {m}\,\hbox {s}^{-1}\))


Position (m)

Greek letters

\(\varOmega \)

Collision operator

\(\varvec{\xi }_\alpha \)

Particle velocity (\(\hbox {m}\,\hbox {s}^{-1}\))

\(\rho \)

Fluid density (\(\hbox {kg}\,\hbox {m}^{-3}\))

\(\varepsilon \)

Energy square (\(\hbox {J}^{2}\))

\(\nu \)

Kinematic viscosity (\(\hbox {m}^{2}\,\hbox {s}^{-1}\))

\(\tau \)

Relaxation time (s)



Molecular or inflow

\(\alpha \)

Associated to the particle velocities \(\varvec{\xi }_\alpha \)






Relative to direction

\(\infty \)



  1. 1.
    Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511–525CrossRefGoogle Scholar
  2. 2.
    Blocken B, Persoon J (2009) Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard. J Wind Eng Ind Aerodyn 97(5):255–270CrossRefGoogle Scholar
  3. 3.
    Blocken B, Stathopoulos T, Carmeliet J, Hensen J (2011) Application of computational fluid dynamics in building performance simulation for the outdoor environment: an overview. J Build Perform Simul 4(2):157–184CrossRefGoogle Scholar
  4. 4.
    Cercignani C (1987) The Boltzmann equation ans its applications. Springer, BerlinGoogle Scholar
  5. 5.
    Chen S, Doolen GD (1998) Lattice boltzmann method for fluid flows. Ann Rev Fluid Mech 30(1):329–364CrossRefGoogle Scholar
  6. 6.
    Crouse B, Krafczyk M, Kühner S, Rank E, Van Treeck C (2002) Indoor air flow analysis based on lattice Boltzmann methods. Energy Build 34(9):941–949CrossRefGoogle Scholar
  7. 7.
    d’Humières D (1994) Generalized lattice-Boltzmann equations. Rarefied gas dynamics—theory and simulations pp 450–458Google Scholar
  8. 8.
    d’Humières D, Ginzburg I, Krafczyk M, Lallemand P, Luo L (2002) Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos Trans 360:437–451Google Scholar
  9. 9.
    Fan Z, Qiu F, Kaufman A, Yoakum-Stover S (2004) GPU cluster for high performance computing. In: Proceedings of the 2004 ACM/IEEE conference on supercomputing, IEEE Computer Society, p 47Google Scholar
  10. 10.
    Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56(14):1505–1508CrossRefGoogle Scholar
  11. 11.
    Gousseau P, Blocken B, Stathopoulos T, van Heijst G (2011) CFD simulation of near-field pollutant dispersion on a high-resolution grid: a case study by LES and RANS for a building group in downtown Montreal. Atmos Environ 45(2):428–438CrossRefGoogle Scholar
  12. 12.
    Krafczyk M, Tölke J, Luo L (2003) Large-eddy simulations with a multiple-relaxation-time LBE model. Int J Mod Phys B 17(1):33–40CrossRefGoogle Scholar
  13. 13.
    Lallemand P, Luo L (2000) Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys Rev E 61(6):6546CrossRefGoogle Scholar
  14. 14.
    Lee V, Kim C, Chhugani J, Deisher M, Kim D, Nguyen A, Satish N, Smelyanskiy M, Chennupaty S, Hammarlund P (2010) Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In: ACM SIGARCH computer architecture news, ACM, vol 38, pp 451–460Google Scholar
  15. 15.
    Martinuzzi R, Tropea C (1993) The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. ASME J Fluids Eng 115:85–85CrossRefGoogle Scholar
  16. 16.
    McNamara GR, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61:2332–2335CrossRefGoogle Scholar
  17. 17.
    Meinders E, Hanjalic K, Martinuzzi R (1999) Experimental study of the local convection heat transfer from a wall-mounted cube in turbulent channel flow. J Heat Transf 121:564CrossRefGoogle Scholar
  18. 18.
    Moonen P, Defraeye T, Dorer V, Blocken B, Carmeliet J (2012) Urban physics: effect of the micro-climate on comfort, health and energy demand. Front Archit Res 1(3):197–228CrossRefGoogle Scholar
  19. 19.
    NVIDIA (2010) Compute unified device architecture programming guide version 3.2Google Scholar
  20. 20.
    Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2011a) A new approach to the lattice Boltzmann method for graphics processing units. Comput Math Appl 12(61):3628–3638CrossRefGoogle Scholar
  21. 21.
    Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2011b) Global memory access modelling for efficient implementation of the lattice Boltzmann method on graphics processing units. In: Lecture notes in computer science 6449, high performance computing for computational science—VECPAR 2010 revised selected papers, Springer, Berlin, pp 151–161Google Scholar
  22. 22.
    Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2011c) The theLMA project: multi-GPU implementation of the lattice Boltzmann method. Int J High Perform Comput Appl 25(3):295–303CrossRefGoogle Scholar
  23. 23.
    Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2011d) Towards urban-scale flow simulations using the lattice Boltzmann method. Proceedings of the BS2011 conferenceGoogle Scholar
  24. 24.
    Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2013) Scalable lattice Boltzmann solvers for CUDA GPU clusters. Parallel Comput 39(6–7):259–270CrossRefGoogle Scholar
  25. 25.
    Oke T (1987) Boundary layer climates. Routledge, LondonGoogle Scholar
  26. 26.
    Onodera N, Aoki T, Shimokawabe T, Kobayashi H (2013) Large-scale LES wind simulation using lattice Boltzmann method for a \(10\,\text{ km }\times 10\, \text{ km }\) area in metropolitan Tokyo. Tech. repGoogle Scholar
  27. 27.
    Pan C, Luo L, Miller C (2006) An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput Fluids 35(8–9):898–909CrossRefGoogle Scholar
  28. 28.
    Pohl T, Deserno F, Thurey N, Rude U, Lammers P, Wellein G, Zeiser T (2004) Performance evaluation of parallel large-scale lattice boltzmann applications on three supercomputing architectures. In: Proceedings of the 2004 ACM/IEEE conference on Supercomputing, IEEE Computer Society, p 21Google Scholar
  29. 29.
    Qian YH, d’Humières D, Lallemand P (1992) Lattice BGK models for Navier–Stokes equation. Europhys Lett 17(6):479–484CrossRefGoogle Scholar
  30. 30.
    Sagaut P (2010) Toward advanced subgrid models for Lattice-Boltzmann-based Large-eddy simulation: theoretical formulations. Comput Math Appl 59(7):2194–2199CrossRefGoogle Scholar
  31. 31.
    Šarić S, Jakirlić S, Djugum A, Tropea C (2006) Computational analysis of locally forced flow over a wall-mounted hump at high-Re number. Int J Heat Fluid Flow 27(4):707–720CrossRefGoogle Scholar
  32. 32.
    Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164CrossRefGoogle Scholar
  33. 33.
    TheLMA (2010–2013) Thermal LBM on many-core architectures. http://www.thelma-project.info
  34. 34.
    Tölke J, Krafczyk M (2008) TeraFLOP computing on a desktop PC with GPUs for 3D CFD. Int J Comput Fluid Dyn 22(7):443–456CrossRefGoogle Scholar
  35. 35.
    Tominaga Y, Stathopoulos T (2010) Numerical simulation of dispersion around an isolated cubic building: model evaluation of RANS and LES. Build Environ 45(10):2231–2239CrossRefGoogle Scholar
  36. 36.
    Yakhot A, Liu H, Nikitin N (2006) Turbulent flow around a wall-mounted cube: a direct numerical simulation. Int J Heat Fluid Flow 27(6):994–1009CrossRefGoogle Scholar
  37. 37.
    Yoshie R, Mochida A, Tominaga Y, Kataoka H, Harimoto K, Nozu T, Shirasawa T (2007) Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan. J Wind Eng Ind Aerodyn 95(9):1551–1578CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Christian Obrecht
    • 1
  • Frédéric Kuznik
    • 1
  • Lucie Merlier
    • 1
  • Jean-Jacques Roux
    • 1
  • Bernard Tourancheau
    • 2
  1. 1.Université de Lyon, CNRS, INSA-Lyon, CETHIL UMR5008Villeurbanne CedexFrance
  2. 2.Université de Grenoble, UJF-Grenoble, LIG UMR5217Grenoble Cedex 9France

Personalised recommendations