Environmental Fluid Mechanics

, Volume 14, Issue 6, pp 1335–1355 | Cite as

On the periodicity of atmospheric von Kármán vortex streets

Original Article


For over 100 years, laboratory-scale von Kármán vortex streets (VKVSs) have been one of the most studied phenomena within the field of fluid dynamics. During this period, countless publications have highlighted a number of interesting underpinnings of VKVSs; nevertheless, a universal equation for the vortex shedding frequency (\(N\)) has yet to be identified. In this study, we have investigated \(N\) for mesoscale atmospheric VKVSs and some of its dependencies through the use of realistic numerical simulations. We find that vortex shedding frequency associated with mountainous islands, generally demonstrates an inverse relationship to cross-stream obstacle length (\(L\)) at the thermal inversion height of the atmospheric boundary layer. As a secondary motive, we attempt to quantify the relationship between \(N\) and \(L\) for atmospheric VKVSs in the context of the popular Strouhal number (\(Sr\))–Reynolds number (\(Re\)) similarity theory developed through laboratory experimentation. By employing numerical simulation to document the \(Sr{-}Re\) relationship of mesoscale atmospheric VKVSs (i.e., in the extremely high \(Re\) regime) we present insight into an extended regime of the similarity theory which has been neglected in the past. In essence, we observe mesoscale VKVSs demonstrating a consistent \(Sr\) range of 0.15–0.22 while varying \(L\) (i.e, effectively varying \(Re\)).


Island wakes Marine boundary layer Stably stratified flows  Strouhal number Von Kármán vortex street 



The authors acknowledge financial support received from the Department of Defense AFOSR grant under award number (FA9550-12-1-0449). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Department of Defense. Additionally, computational resources were generously provided by the Renaissance Computing Institute of Chapel Hill, NC. Finally, the authors would like to thank Branko Kosovi c̀ , Gary Lackmann, Ákos Horváth, Kevin Mueller, and Mikhail Vorontsov for important dialogue and also Bert Holtslag for pointing out a relevant internal report by Annick Terpstra.


  1. 1.
    Achenbach E, Heinecke E (1981) On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers \(6~\times ~10^3\) to \(5~\times ~10^6\). J Fluid Mech 109(1):239–251Google Scholar
  2. 2.
    Aebischer U, Schär C (1998) Low-level potential vorticity and cyclogenesis to the lee of the Alps. J Atmos Sci 55(2):186–207CrossRefGoogle Scholar
  3. 3.
    Bénard H (1908) Étude cinématographique des remous et des rides produits par la translation dun obstacle. Compt Rend Acad Sci 147:970–972Google Scholar
  4. 4.
    Berlin P (1981) Meteosat tracks Karman vortex streets in the atmosphere. ESA Bull 1:16–19Google Scholar
  5. 5.
    Berrisford P, Dee D, Fielding K, Fuentes M, Kllberg P, Kobayashi S, Uppala S (2009) The ERA-Interim archive. Tech. rep., ECMWF. ERA Report Series, No.1Google Scholar
  6. 6.
    Birkhoff G, Zarantonello E (1957) Jets, wakes, and cavities, vol 2. Academic Press, New YorkGoogle Scholar
  7. 7.
    Caldeira RM, Tomé R (2013) Wake response to an ocean-feedback mechanism: Madeira island case study. Bound Layer Meteorol 5:1–18. doi: 10.1007/s10546-013-9817-y Google Scholar
  8. 8.
    Chen F, Dudhia J (2001) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Mon Weather Rev 129:587–604CrossRefGoogle Scholar
  9. 9.
    Chopra K, Hubert L (1965) Mesoscale eddies in wake of islands. J Atmos Sci 22(6):652–657CrossRefGoogle Scholar
  10. 10.
    Couvelard X, Caldeira R, Araujo I, Tomé R (2012) Wind mediated vorticity-generation and eddy-confinement, leeward of the Madeira island: 2008 numerical case study. Dyn Atmos Oceans 58:128–149Google Scholar
  11. 11.
    Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  12. 12.
    Epifanio C, Durran D (2002) Lee-vortex formation in free-slip stratified flow over ridges. part I: comparison of weakly nonlinear inviscid theory and fully nonlinear viscous simulations. J Atmos Sci 59(7):1153–1165CrossRefGoogle Scholar
  13. 13.
    Epifanio C, Durran D (2002) Lee-vortex formation in free-slip stratified flow over ridges. part II: mechanisms of vorticity and PV production in nonlinear viscous wakes. J Atmos Sci 59(7):1166–1181CrossRefGoogle Scholar
  14. 14.
    Etling D (1989) On atmospheric vortex streets in the wake of large islands. Meteorol Atmos Phys 41(3):157–164CrossRefGoogle Scholar
  15. 15.
    Global forecast system documentation version 9.0.1. Accessed: 04/03/2012 from the National Centers for Environmental Prediction
  16. 16.
    Heinze R, Raasch S, Etling D (2012) The structure of Kármán vortex streets in the atmospheric boundary layer derived from large eddy simulation. Meteorol Z 21(3):221–237Google Scholar
  17. 17.
    Hollingshead AT, Businger S, Draxler R, Porter J, Stevens D (2003) Dispersion modelling of the Kilauea plume. Bound Layer Meteorol 108(1):121–144CrossRefGoogle Scholar
  18. 18.
    Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120CrossRefGoogle Scholar
  19. 19.
    Horváth Á (2013) Improvements to MISR stereo motion vectors. J Geophys Res 118:5600–5620CrossRefGoogle Scholar
  20. 20.
    Hubert L, Krueger A (1962) Satellite pictures of mesoscale eddies. Mon Weather Rev 90(11):457–463CrossRefGoogle Scholar
  21. 21.
    Hunt JCR, Simpson JE (1982) Atmospheric boundary layers over non-homogeneous terrain. Elsevier, Amsterdam, pp 269–318Google Scholar
  22. 22.
    Janjic̀ ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945CrossRefGoogle Scholar
  23. 23.
    Kain J (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRefGoogle Scholar
  24. 24.
    King M, Menzel W, Kaufman Y, Tanré D, Gao B, Platnick S, Ackerman S, Remer L, Pincus R, Hubanks P (2003) Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans Geosci Remote Sens 41(2):442–458Google Scholar
  25. 25.
    King M, Platnick S, Yang P, Arnold G, Gray M, Riedi J, Ackerman S, Liou K (2004) Remote sensing of liquid water and ice cloud optical thickness and effective radius in the arctic: application of airborne multispectral MAS data. J Atmos Ocean Technol 21(6):857–875CrossRefGoogle Scholar
  26. 26.
    Li X, Zheng W, Zou C, Pichel W (2008) A SAR observation and numerical study on ocean surface imprints of atmospheric vortex streets. Sensors 8(5):3321–3334CrossRefGoogle Scholar
  27. 27.
    Lindborg E (1999) Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J Fluid Mech 388:259–288CrossRefGoogle Scholar
  28. 28.
    Mallock A (1907) On the resistance of air. Proc R Soc Lond 79(530):262–273CrossRefGoogle Scholar
  29. 29.
    Matsumoto M, Daito Y, Kanamura T, Shigemura Y, Sakuma S, Ishizaki H (1998) Wind-induced vibration of cables of cable-stayed bridges. J Wind Eng Ind Aerodyn 74:1015–1027CrossRefGoogle Scholar
  30. 30.
    Mlawer E, Taubman S, Brown P, Lacono M (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682CrossRefGoogle Scholar
  31. 31.
    Nappo CJ (2012) An introduction to atmospheric gravity waves, vol 102. Academic Press, New YorkGoogle Scholar
  32. 32.
    NASA (2013) Moderate resolution imaging spectroradiometer image gallery. Scholar
  33. 33.
    Platnick S, King M, Ackerman S, Menzel W, Baum B, Riédi J, Frey R (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE Trans Geosci Remote Sens 41(2):459–473CrossRefGoogle Scholar
  34. 34.
    Ponta FL, Aref H (2004) Strouhal-Reynolds number relationship for vortex streets. Phys Rev Lett 93(8):84501CrossRefGoogle Scholar
  35. 35.
    Roshko A (1954) On the development of turbulent wakes from vortex streets. Tech. rep, National Advisory Committee for AeronauticsGoogle Scholar
  36. 36.
    Rotunno R, Grubišic V, Smolarkiewicz P (1999) Vorticity and potential vorticity in mountain wakes. J Atmos Sci 56(16):2796–2810CrossRefGoogle Scholar
  37. 37.
    Roushan P, Wu X (2005) Universal wake structures of Kármán vortex streets in two-dimensional flows. Phys Fluids 17:073601CrossRefGoogle Scholar
  38. 38.
    Schär C, Durran DR (1997) Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J Atmos Sci 54(4):534–554CrossRefGoogle Scholar
  39. 39.
    Schär C, Smith RB (1993) Shallow-water flow past isolated topography. part I: vorticity production and wake formation. J Atmos Sci 50(10):1373–1400CrossRefGoogle Scholar
  40. 40.
    Skamarock WC (2004) Evaluating mesoscale NWP models using kinetic energy spectra. Mon Weather Rev 132(12):3019–3032CrossRefGoogle Scholar
  41. 41.
    Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. Tech. Rep. NCAR/TN-457+STR, National Center for, Atmospheric ResearchGoogle Scholar
  42. 42.
    Smolarkiewicz PK, Rotunno R (1989) Low Froude number flow past three-dimensional obstacles. part 1: baroclinically generated lee vortices. J Atmos Sci 46(8):1154–1164Google Scholar
  43. 43.
    Snyder W, Hunt J, Lee J, Castro I, Lawson R, Eskridge R, Thompson R, Ogawa Y (1985) The structure of strongly stratified flow over hills: dividing-streamline concept. J Fluid Mech 152:249–288Google Scholar
  44. 44.
    Thomson R, Gower J, Bowker N (1977) Vortex streets in the wake of the Aleutian Islands. Mon Weather Rev 105(7):873–884CrossRefGoogle Scholar
  45. 45.
    Tyler E (1930) A hot-wire amplifier method for the measurement of the distribution of vortices behind obstacles. Lond Edinb Dublin Philos Mag J Sci 9(61):1113–1130Google Scholar
  46. 46.
    Van Dyke M (1982) Album of fluid motion. Parabolic Press, Stanford, pp 1–175Google Scholar
  47. 47.
    von Kármán T, Rubach H (1912) Über den mechanismus des flüssigkeitsund luftwiderstandes. Zeitschrift für Physik 13:49–59Google Scholar
  48. 48.
    Vorontsov MA, Carhart GW, Rao Gudimetla V, Weyrauch T, Stevenson E, Lachinova SL, Beresnev LA, Liu J, Rehder K, Riker JF (2010) Characterization of atmospheric turbulence effects over 149 km propagation path using multi-wavelength laser beacons. In: Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, E18 (2010)Google Scholar
  49. 49.
    Young G, Zawislak J (2006) An observational study of vortex spacing in island wake vortex streets. Mon Weather Rev 134(8):2285–2294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Marine, Earth, and Atmospheric SciencesNorth Carolina State UniversityRaleighUSA

Personalised recommendations