Environmental Fluid Mechanics

, Volume 12, Issue 5, pp 439–449 | Cite as

Laboratory studies defining flow regimes for negatively buoyant surface discharges into crossflow

  • M. Saeedi
  • A. Aliabadi Farahani
  • O. Abessi
  • T. Bleninger
Original Article


Surface discharges of negatively buoyant jets into moving ambient water create a range of complex flow patterns. These complexities arise through the interplay between the discharge’s initial fluxes and the motion of the ambient current. In this study a series of laboratory experiments were conducted for negatively buoyant surface discharges into crossflow to investigate flow patterns under different discharge and ambient conditions. The results compared with simulations of the CORMIX model, an expert system for ocean outfall design. In CORMIX, the simulation module DHYDRO for dense discharges has been used. Finally the flow different patterns were arranged in a dimensionless diagram to propose a modified flow classification system with new criteria.


Surface discharge Flow regimes Negatively buoyant Flow pattern CORMIX 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doneker RL, Jirka GH (2001) CORMIX-GI systems for mixing zone analysis of brine waste water disposal. Desalination 139: 263–274CrossRefGoogle Scholar
  2. 2.
    Purnama A, Al-Barwani HH, Al-Lawatia M (2003) Modeling dispersion of brine waste from a coastal desalination plant. Desalination 155: 41–47CrossRefGoogle Scholar
  3. 3.
    Bleninger T, Jirka GH (2008) Modeling and environmentally sound management of brine discharges from desalination plants. Desalination 221: 585–597CrossRefGoogle Scholar
  4. 4.
    Shao D, Law AWK (2010) Mixing and boundary interactions of 30° and 45° inclined dense jets. Environ Fluid Mech 10: 521–553CrossRefGoogle Scholar
  5. 5.
    Abessi O, Saeedi M, Davidson M, HajizadehZaker N (2011) Flow classification of negatively buoyant surface discharge in an ambient current. J Coastal Res. doi: 10.2112/JCOASTRES-D-10-00131.1
  6. 6.
    Robert HS, Gibbs M, Waugh B (2005) Field calibration of a formula for entrance mixing of river inflows to lake: Lake Taupo, North Island, New Zealand. New Zeal J Mar Fresh 39: 785–802CrossRefGoogle Scholar
  7. 7.
    Roberts PJW, Tome G (1987) Inclined dense jets in flowing current. J Hydraul Eng 113: 323–341CrossRefGoogle Scholar
  8. 8.
    Roberts PJW, Ferrier A, Daviero G (1997) Mixing in inclined dense jet. J Hydraul Eng 123: 693–699CrossRefGoogle Scholar
  9. 9.
    Kikkert G, Davidson M, Nokes I (2007) Inclined negatively buoyant discharges. J Hydraul Eng 133: 545–554CrossRefGoogle Scholar
  10. 10.
    Ahmed M, Shayya WH, Hoey D, Al-Handaly J (2001) Brine disposal from reverse osmosis desalination plants in Oman and the United Arab Emirates. Desalination 133: 135–147CrossRefGoogle Scholar
  11. 11.
    Bleninger T, Niepelt A, Jirka GH (2010) Desalination plant discharge calculator. Desalination Water Treat 13: 156–173CrossRefGoogle Scholar
  12. 12.
    Jones RG, Nash DJ, Jirka HG (1996) CORMIX3: an experimental system for mixing zone analysis and prediction of buoyant surface discharges. Cornell University, User manual, DeFrees Hydraulics Laboratory, New YorkGoogle Scholar
  13. 13.
    Lattemann S, Hopner T (2003) Seawater desalination: impacts of brine and chemical discharges on the marine environment. Desalination Publ, L’Aquila, p 142. ISBN:0–6689–062–9Google Scholar
  14. 14.
    Jones G, Nash D, Doneker L, Jirka H (2007) Buoyant surface discharge into water bodies. I: flow classification and prediction methodology. J Hydraul Eng 133: 1010–1020CrossRefGoogle Scholar
  15. 15.
    Jirka GH, Adams EE, Stolzenbach KD (1981) Buoyant surface jets. J Hydraul Div 107: 1467–1487Google Scholar
  16. 16.
    Chu VH, Jirka GH (1986) Chapter 25: surface buoyant jets, encyclopedia of fluid mechanics. Gulf Publishing Company, Houston, p 155Google Scholar
  17. 17.
    Kassem A, Imran J (2001) Simulation of turbid underflows generated by the plunging of a river. Geology 29(7): 655–658CrossRefGoogle Scholar
  18. 18.
    Jen Y, Wiegel RL, Mobarek I (1966) Surface discharges of horizontal warm water jets. Power Div 92: 1–29Google Scholar
  19. 19.
    Motz LH, Benedict BA (1970) Heated surface jet discharged into a flowing ambient stream. Vanderbilt University, Department of Environmental and Water Resources Engineering, Nashville (Tech. Rep. 4)Google Scholar
  20. 20.
    Stefan H, Hayakawa N, Schiebe FR (1971) Surface discharge of heated water. U.S. Environmental Protection Agency, Washington, DC (Rep. 16130)Google Scholar
  21. 21.
    Prych EA (1972) A warm water effluent analyzed as a buoyant jet. Sverigas Meteorologiska och Hydrologiska Institut, vol. 21. Service Hydraulique, StockholmGoogle Scholar
  22. 22.
    Carter HH, Regier R (1974) The three-dimensional heated surface jet in a crossflow. Johns Hopkins University, Chesapeake Bay Institute, Baltimore, p 50 (Tech. Rep. 88)Google Scholar
  23. 23.
    Shirazi MA, Davis LR (1974) Workbook on thermal plume prediction. U.S. Environmental Protection Agency, Corvallis. Technical Series, 2-surface discharges (Tech. Rep. EPA-R2-72-0056)Google Scholar
  24. 24.
    Abdelwahed MST, Chu VH (1981) Surface jets and surface plumes in crossflows. McGill University, Fluid Mechanics Laboratory, Montreal, p 120 (Tech. Rep. 81–1)Google Scholar
  25. 25.
    Delft Hydraulics (1983) Buoyant surface jets in crossflow. Delft Hydraulics Laboratory, Delft, p 210. Report on experimental investigation-S350-IIGoogle Scholar
  26. 26.
    Brocard DN (1984) Surface buoyant jets in reversing and steady crossflows. 1: experiments. Alden Research Laboratory, Worcester, p 80 (Tech. Rep. 18-84/M424F)Google Scholar
  27. 27.
    Jirka GH (2004) Integral model for turbulent buoyant jets in unbounded stratified flows. Part 1: single round buoyant jet. Environ Fluid Mech 4(1): 1–56CrossRefGoogle Scholar
  28. 28.
    Jirka GH (2007) Buoyant surface discharges into water bodies. II: jet integral model. J Hydraul Eng 133(9): 1021–1036CrossRefGoogle Scholar
  29. 29.
    Doneker LR, Jirka GH (1997) D-CORMIX continues dredge disposal mixing zone water quality model laboratory and filed data validation study. U.S. environmental protection agency, Washington, DCGoogle Scholar
  30. 30.
    Doneker RL, Jirka GH (2007) CORMIX user manual: a hydrodynamic mixing zone model and decision support system for pollutant discharges into surface waters. U.S.EPA-823-K-07-001Google Scholar
  31. 31.
    Fischer B, List JE, Imberger J, Brooks HN (1979) Mixing in inland and coastal waters. Academic Press, Inc., New York, p 212Google Scholar
  32. 32.
    Millero FJ, Poisson A (1981) International one atmosphere equation of state for sea water. Deep sea Res 13: 453–459Google Scholar
  33. 33.
    Nokes RI (2005) ImageStream version 4.01. University of Canterbury. Image Processing Software, ChristchurchGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Saeedi
    • 1
  • A. Aliabadi Farahani
    • 1
  • O. Abessi
    • 1
  • T. Bleninger
    • 2
  1. 1.Department of Water and Environment, School of Civil EngineeringIran University of Science and TechnologyNarmak, TehranIran
  2. 2.Department of Environmental Engineering (DEA)Federal University of Paraná (UFPR)CuritibaBrazil

Personalised recommendations