Advertisement

Environmental Fluid Mechanics

, Volume 11, Issue 6, pp 611–625 | Cite as

Scalar transport from point sources in the flow around a finite-height cylinder

  • Guillermo Palau-Salvador
  • Manuel García-Villalba
  • Wolfgang Rodi
Original Article

Abstract

This paper presents a large eddy simulation of mass transfer in the flow around a surface-mounted finite-height circular cylinder. The study was carried out for a cylinder with height-to-diameter ratio of 2.5 and a Reynolds number based on the cylinder diameter of 44000. The approach flow boundary layer had a thickness of about 10% of the cylinder height. A tracer was released at various levels upstream of the cylinder. The effect of the release position in the subsequent spreading and dilution of the plumes is analyzed. It is found that a tracer released at the top or at mid-height is entrained into the recirculation zone behind the cylinder, and therefore presents similar plume evolution in the far wake in both cases. If the tracer is released at around three-quarters of the height of the cylinder, it is not significantly entrained by the main recirculation region, leading to smaller rates of spreading of the plume. Finally, if the tracer is released near the floor, the plume is entrained by the horseshoe vortex that wraps around the cylinder, leading to a large lateral spreading of the plume, remaining always near the floor.

Keywords

LES Scalar transport Finite-height cylinder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balachandar R, Chu VH, Zhang J (1997) Experimental study of turbulent concentration flow field in the wake of a bluff body. J Fluids Eng 119(2): 263–270CrossRefGoogle Scholar
  2. 2.
    Breuer M, Rodi W (1996) Large eddy simulation of complex turbulent flows of practical interest. In: Hirschel E (eds) Flow simulation with high performance computers II, Notes on Numerical Fluid Mechanics, vol 52. Vieweg, Braunschweig, pp 258–274Google Scholar
  3. 3.
    Cowan IR (1997) A comparison of wind-tunnel experiments and computational simulations of dispersion in the environs of buildings. Int J Environ Pollut 8(3): 699–707Google Scholar
  4. 4.
    Denev JA, Fröhlich J, Bockhorn H (2009) Large eddy simulation of a swirling transverse jet into a crossflow with investigation of scalar transport. Phys Fluids 21: 015101CrossRefGoogle Scholar
  5. 5.
    Donnert GD, Kappler M, Rodi W (2007) Measurement of tracer concentration in the flow around finite-height cylinders. J Turbul 8(33). doi: 10.1080/14685240701429792
  6. 6.
    Fröhlich J, Rodi W (2004) LES of the flow around a cylinder of finite height. Int J Heat Fluid Flow 25: 537–548CrossRefGoogle Scholar
  7. 7.
    Fröhlich J, García-Villalba M, Rodi W (2008) Scalar mixing and large-scale coherent structures in a turbulent swirling jet. Flow Turbul Combust 80: 47–59CrossRefGoogle Scholar
  8. 8.
    García-Villalba M, Fröhlich J (2006) LES of a free annular swirling jet-dependence of coherent structures on a pilot jet and the level of swirl. Int J Heat Fluid Flow 27(5): 911–923CrossRefGoogle Scholar
  9. 9.
    García-Villalba M, Li N, Rodi W, Leschziner MA (2009) Large eddy simulation of separated flow over a three-dimensional axisymmetric hill. J Fluid Mech 627: 55–96CrossRefGoogle Scholar
  10. 10.
    Germano M, Piomelli U, Moin P, Cabot W (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids 3: 1760–1765CrossRefGoogle Scholar
  11. 11.
    Gomes MSP, Vincent JH, Pui D (1999) The effect of freestream turbulence on the transport of particles in the vicinity of a blunt flow obstacle. Atmos Env 33(27): 4459–4468CrossRefGoogle Scholar
  12. 12.
    Hinterberger C (2004) Dreidimensionale und tiefengemittelte Large-Eddy-Simulation von Flachwasserströmungen. PhD thesis, University of KarlsruheGoogle Scholar
  13. 13.
    Hinterberger C, Fröhlich J, Rodi W (2008) 2D and 3D turbulent fluctuations in open channel flow with Re τ = 590 studied by Large Eddy Simulation. Flow Turbul Combust 80: 225–253CrossRefGoogle Scholar
  14. 14.
    Hölscher N, Niemann HJ (1987) Some aspects about the flow around a surface-mounted circular cylinder in a turbulent shear flow. In: Proceedings of the 6th symposium international turbulent shear flows, ToulouseGoogle Scholar
  15. 15.
    Kappler M (2002) Experimentelle Untersuchung der Umströmung von Kreiszylindern mit ausgeprägt dreidimensionalen Effekten. PhD thesis, University of KarlsruheGoogle Scholar
  16. 16.
    Lilly D (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids 4: 633–635CrossRefGoogle Scholar
  17. 17.
    Nepf HM, Koch EW (1999) Vertical secondary flows in stem arrays. Limnol Ocean 44: 1072–1080CrossRefGoogle Scholar
  18. 18.
    Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives. Springer, New YorkGoogle Scholar
  19. 19.
    Palau-Salvador G, Stoesser T, Fröhlich J, Kappler M, Rodi W (2010) Large-Eddy simulations and experiments of flow around finite-height cylinders. Flow Turbul Combust 84: 239–275CrossRefGoogle Scholar
  20. 20.
    Pattenden R, Turnock S, Zhang X (2005) Measurements of the flow over a low-aspect ratio cylinder mounted on a ground plate. Exp Fluids 39: 10–21CrossRefGoogle Scholar
  21. 21.
    Pierce C (2001) Progress-variable approach for large-eddy simulation of turbulent combustion. PhD thesis, Stanford UniversityGoogle Scholar
  22. 22.
    Rhie C, Chow W (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21(11): 1061–1068CrossRefGoogle Scholar
  23. 23.
    Stone H (1968) Iterative solution of implicit approximations of multidimensional partial differential equations for finite difference methods. SIAM J Numer Anal 5: 530–558CrossRefGoogle Scholar
  24. 24.
    Zhang YQ, Aryaand SP, Snyder WH (1996) A comparison of numerical and physical modeling of stable atmospheric flow and dispersion around a cubical building. Atmos Env 30(8): 1327–1345CrossRefGoogle Scholar
  25. 25.
    Zhu J (1991) Low diffusive and oscillation-free convection scheme. Comm Appl Numer Methods 7: 225–232CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Guillermo Palau-Salvador
    • 1
  • Manuel García-Villalba
    • 2
    • 3
  • Wolfgang Rodi
    • 2
  1. 1.Department of Rural EngineeringPolytechnical University of ValenciaValenciaSpain
  2. 2.Institute of HydromechanicsKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations