Advertisement

Environmental Fluid Mechanics

, Volume 10, Issue 1–2, pp 103–120 | Cite as

Quantification of advective solute travel times and mass transport through hydrological catchments

  • Amélie DarracqEmail author
  • Georgia Destouni
  • Klas Persson
  • Carmen Prieto
  • Jerker Jarsjö
Original Article

Abstract

This study has investigated and outlined the possible quantification and mapping of the distributions of advective solute travel times through hydrological catchments. These distributions are essential for understanding how local water flow and solute transport and attenuation processes affect the catchment-scale transport of solute, for instance with regard to biogeochemical cycling, contamination persistence and water quality. The spatial and statistical distributions of advective travel times have been quantified based on reported hydrological flow and mass-transport modeling results for two coastal Swedish catchments. The results show that the combined travel time distributions for the groundwater-stream network continuum in these catchments depend largely on the groundwater system and model representation, in particular regarding the spatial variability of groundwater hydraulic parameters (conductivity, porosity and gradient), and the possible contributions of slower/deeper groundwater flow components. Model assumptions about the spatial variability of groundwater hydraulic properties can thus greatly affect model results of catchment-scale solute spreading. The importance of advective travel time variability for the total mass delivery of naturally attenuated solute (tracer, nutrient, pollutant) from a catchment to its downstream water recipient depends on the product of catchment-average physical travel time and attenuation rate.

Keywords

Hydrology Travel time Solute transport Natural attenuation Catchment Groundwater–surface water interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McGuire KJ, McDonnell JJ (2006) A review and evaluation of catchment transit time modeling. J Hydrol 330: 543–563CrossRefGoogle Scholar
  2. 2.
    Maloszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability. J Hydrol 57: 207–231CrossRefGoogle Scholar
  3. 3.
    Simic E, Destouni G (1999) Water and solute residence times in a catchment: stochastic model interpretation of 18O transport. Water Resour Res 35(7): 2109–2120CrossRefGoogle Scholar
  4. 4.
    Lindgren GA, Destouni G (2004) Nitrogen loss rates in streams: scale-dependence and up-scaling methodology. Geophys Res Lett. doi: 10.1029/2004GL019996
  5. 5.
    Lindgren GA, Destouni G, Miller AV (2004) Solute transport through the integrated groundwater–stream system of a catchment. Water Resour Res. doi: 10.1029/2003WR002765
  6. 6.
    Botter G, Bertuzzo E, Bellin A, Rinaldo A (2005) On the Lagrangian formulations of reactive solute transport in the hydrologic response. Water Resour Res. doi: 10.1029/2004WR003544
  7. 7.
    Fiori A, Russo D (2008) Travel time distribution in a hillslope: insight from numerical simulations. Water Resour Res. doi: 10.1029/2008WR007135
  8. 8.
    Schnoor JL (1996) Environmental modeling: fate and transport of pollutants in water, air and soil. Wiley, New YorkGoogle Scholar
  9. 9.
    Rinaldo A, Marani A, Rigon R (1991) Geomorphological dispersion. Water Resour Res 27(4): 513–525CrossRefGoogle Scholar
  10. 10.
    White AB, Kumar P, Saco PM, Rhoads BL, Yen BC (2004) Hydrodynamic and geomorphologic dispersion: scale effects in the Illinois River Basin. J Hydrol 288: 237–257CrossRefGoogle Scholar
  11. 11.
    Saco PM, Kumar P (2002) Kinematic dispersion in stream networks 1. Coupling hydraulic and network geometry. Water Resour Res. doi: 10.1029/2001WR000695
  12. 12.
    Valett HM, Morrice JA, Dahm CN, Campana ME (1996) Parent lithology, surface-groundwater exchange, and nitrate retention in headwater streams. Limnol Oceanogr 41(2): 333–345Google Scholar
  13. 13.
    Ensign SH, Doyle MW (2005) In-channel transient storage and associated nutrient retention: evidence from experimental manipulations. Limnol Oceanogr 50(6): 1740–1751Google Scholar
  14. 14.
    Haggerty R, Wondzell SM, Johnson MA (2002) Power-law residence time distribution in the hyporheic zone of a 2nd-order mountain stream. Geophys Res Lett. doi: 10.1029/2002GL014743
  15. 15.
    McGuire KJ, McDonnell JJ, Weiler M, Kendall C, McGlynn BL, Welker JM, Seibert J (2005) The role of topography on catchment-scale water residence time. Water Resour Res 41(5): W05002.1–W05002.14CrossRefGoogle Scholar
  16. 16.
    Boano F, Packman AI, Cortis A, Revelli R, Ridolfi L (2007) A continuous time random walk approach to the stream transport of solutes. Water Resour Res. doi: 10.1029/2007WR006062
  17. 17.
    Wörman A, Packman AI, Marklund L, Harvey J, Stone S (2007) Fractal topography and subsurface water flows from fluvial bedforms to the continental shield. Geophys Res Lett. doi: 10.1029/2007GL029426
  18. 18.
    Malmström ME, Destouni G, Banwart SA, Strömberg BHE (2000) Resolving the scale-dependence of mineral weathering rates. Environ Sci Technol 34: 1375–1378CrossRefGoogle Scholar
  19. 19.
    Darracq A, Destouni G (2005) In-stream nitrogen attenuation: model-aggregation effects and implications for coastal nitrogen impacts. Environ Sci Technol 39(10): 3716–3722CrossRefGoogle Scholar
  20. 20.
    Darracq A, Destouni G (2007) Physical versus biogeochemical interpretations of nitrogen and phosphorus attenuation in streams and its dependence on stream characteristics. Glob Biogeochem Cycles. doi: 10.1029/2006GB002901
  21. 21.
    Darracq A, Greffe F, Hannerz F, Destouni G, Cvetkovic V (2005) Nutrient transport scenarios in a changing Stockholm and Mälaren valley region. Water Sci Technol 51(3-4): 31–38Google Scholar
  22. 22.
    Destouni G, Darracq A (2006) Response to comment on “In-stream nitrogen attenuation: model aggregation effects and implications for coastal nitrogen impacts”. Environ Sci Technol 40(7): 2487–2488CrossRefGoogle Scholar
  23. 23.
    Lindgren GA, Destouni G, Darracq A (2007) The inland subsurface water system role for coastal nitrogen load dynamics and abatement responses. Environ Sci Technol 41(7): 2159–2164CrossRefGoogle Scholar
  24. 24.
    Darracq A, Lindgren GA, Destouni G (2008) Long-term development of phosphorus and nitrogen loads through the subsurface and surface water systems of drainage basins, Global Biogeochem Cycles. doi: 10.1029/2007GB003022
  25. 25.
    Jarsjö J, Shibuo Y, Destouni G (2004) Using the PCRaster-POLFLOW approach to GISbased modelling of coupled groundwater–surface water hydrology in the Forsmark Area. Swedish Nuclear Fuel and Waste Management Company Report R-04-54, Stockholm, SwedenGoogle Scholar
  26. 26.
    Jarsjö J, Destouni G, Persson K, Prieto C (2007) Solute transport in coupled inland-coastal water systems. General conceptualization and application to Forsmark. Swedish Nuclear Fuel and Waste Management Company Report R-07-65, Stockholm, SwedenGoogle Scholar
  27. 27.
    Destouni G, Shibuo Y, Jarsjö J (2008) Freshwater flows to the sea: spatial variability, statistics and scale dependence along coastlines. Geophys Res Lett. doi: 10.1029/2008GL035064
  28. 28.
    Jarsjö J, Shibuo Y, Destouni G (2008) Spatial distribution of unmonitored inland water discharges to the sea. J Hydrol 348(12): 59–72CrossRefGoogle Scholar
  29. 29.
    Dagan G (1989) Flow and transport in porous formations. Springer Verlag, BerlinGoogle Scholar
  30. 30.
    Rubin Y (2003) Applied stochastic hydrogeology. Oxford University Press, New YorkGoogle Scholar
  31. 31.
    Simmons CS (1982) A stochastic-convective transport representation of dispersion in one-dimensional porous media. Water Resour Res 18: 1193–1214CrossRefGoogle Scholar
  32. 32.
    Shapiro AM, Cvetkovic V (1998) Stochastic analysis of solute travel time in heterogeneous porous media. Water Resour Res 24: 1711–1718CrossRefGoogle Scholar
  33. 33.
    Cvetkovic V, Shapiro AM (1990) Mass arrival of sorptive solute in heterogeneous porous media. Water Resour Res 26: 2057–2067CrossRefGoogle Scholar
  34. 34.
    Destouni G, Cvetkovic V (1991) Field-scale mass arrival of sorptive solute into the groundwater. Water Resour Res 27: 1315–1325CrossRefGoogle Scholar
  35. 35.
    Destouni G (1993) Stochastic modeling of solute flux in the unsaturated zone at the field scale. J Hydrol 143: 45–61CrossRefGoogle Scholar
  36. 36.
    Cvetkovic V, Dagan G (1994) Transport of kinetically sorbing solute by steady random velocity in heterogeneous porous formations. J Fluid Mech 265: 189–215CrossRefGoogle Scholar
  37. 37.
    Destouni G, Sassner M, Jensen KH (1994) Chloride migration in heterogeneous soil: 2, stochastic modeling. Water Resour Res 30:747–758 (Correction, Water Resour Res 31:1161, 1995)Google Scholar
  38. 38.
    Ginn TR, Simmons CS, Wood BD (1995) Stochastic-convective transport with nonlinear reaction: biodegradation with microbial growth. Water Resour Res 31: 2689–2700CrossRefGoogle Scholar
  39. 39.
    Simmons CS, Ginn TR, Wood BD (1995) Stochastic-convective transport with nonlinear reaction: mathematical framework. Water Resour Res 31: 2675–2688CrossRefGoogle Scholar
  40. 40.
    Berglund S, Cvetkovic V (1996) Contaminant displacement in aquifers: coupled effects of flow heterogeneity and nonlinear sorption. Water Resour Res 32: 23–32CrossRefGoogle Scholar
  41. 41.
    Cvetkovic V, Dagan G (1996) Reactive transport and immiscible flow in geochemical media: 2 applications. Proc R Soc Lond Ser A 452: 303–328CrossRefGoogle Scholar
  42. 42.
    Eriksson N, Destouni G (1997) Combined effects of dissolution kinetics, secondary mineral precipitation, and preferential flow on copper leaching from mining waste rock. Water Resour Res 33: 471–483CrossRefGoogle Scholar
  43. 43.
    Yabusaki SB, Steefel CI, Wood BD (1998) Multidimensional, multicomponent, subsurface reactive transport in nonuniform velocity fields: code verification using an advective reactive streamtube approach. J Contam Hydrol 30(3): 299–331CrossRefGoogle Scholar
  44. 44.
    Foussereau X, Graham W, Aakpoji A, Destouni G, Rao PSC (2001) Solute transport through a heterogeneous coupled vadose-saturated zone system with temporally random rainfall. Water Resour Res 37(6): 1577–1588CrossRefGoogle Scholar
  45. 45.
    Tompson AFB, Bruton CJ, Pawloski GA, Smith DK, Bourcier WL, Shumaker DE, Kersting AB, Carle SF, Maxwell RM (2002) On the evaluation of groundwater contamination from underground nuclear tests. Environ Geol 42: 235–247CrossRefGoogle Scholar
  46. 46.
    Cvetkovic V, Haggerty R (2002) Transport with multiple-rate exchange in disordered media. Phys Rev E. doi: 10.1103/PhysRevE.65.051308
  47. 47.
    Malmström ME, Destouni G, Martinet P (2004) Modeling expected solute concentration in randomly heterogeneous flow systems with multicomponent reactions. Environ Sci Technol 38: 2673–2679CrossRefGoogle Scholar
  48. 48.
    Rinaldo A, Marani A (1987) Basin scale model of solute transport. Water Resour Res 23: 2107–2118CrossRefGoogle Scholar
  49. 49.
    Destouni G, Graham W (1995) Solute transport through an integrated heterogeneous soil–groundwater system. Water Resour Res 31: 1935–1944CrossRefGoogle Scholar
  50. 50.
    Botter G, Bertuzzo E, Bellin A, Rinaldo A (2005) On the Lagrangian formulations of reactive solute transport in the hydrologic response. Water Resour Res. doi: 10.1029/2004WR003544
  51. 51.
    Dagan G, Fiori A (1997) The influence of pore-scale dispersion on concentration statistical moments in transport through heterogeneous aquifers. Water Resour Res 33(7): 1595–1606CrossRefGoogle Scholar
  52. 52.
    Fiori A, Dagan G (2000) Concentration fluctuations in aquifer transport: a rigorous first-order solution and applications. J Contam Hydrol 45: 139–163CrossRefGoogle Scholar
  53. 53.
    Fiori A, Berglund S, Cvetkovic V, Dagan G (2002) A first-order analysis of solute flux statistics in aquifers: the combined effect of pore-scale dispersion, sampling, and linear sorption kinetics. Water Resour Res. doi: 10.1029/2001WR000678
  54. 54.
    Janssen GMCM, Cirpka OA, Van der Zee EATM (2006) Stochastic analysis of nonlinear biodegradation in regimes controlled by both chromatographic and dispersive mixing. Water Resour Res. doi: 10.1029/2005WR004042
  55. 55.
    Malmström ME, Berglund S, Jarsjö J (2008) Combined effects of spatially variable flow and mineralogy on the attenuation of acid mine drainage in groundwater. Appl Geochem 23(6): 1419–1436CrossRefGoogle Scholar
  56. 56.
    Lindborg T (2005) Description of surface systems. Preliminary site description Forsmark area—version 12. Swedish Nuclear Fuel and Waste Management Company Report R-05-03, Stockholm, SwedenGoogle Scholar
  57. 57.
    Johansson P-O, Werner K, Bosson E, Juston J (2005) Description of climate, surface hydrology, and near-surface hydrology. Preliminary site description. Forsmark area—version 1.2. Swedish Nuclear Waste Management Company (SKB) Report R-05-06, Stockholm, SwedenGoogle Scholar
  58. 58.
    de Wit MJM (1999) Nutrients fluxes in the Rhine and Elbe basins. Dissertation, Royal Dutch Geographical Society, Utrecht, NetherlandsGoogle Scholar
  59. 59.
    Tetzlaff D, Seibert J, McGuire KJ, Laudon H, Burns DA, Dunn SM, Soulsby C (2009) How does landscape structure influence catchment transit time across different geomorphic provinces?.  Hydrol Process 23: 945–953CrossRefGoogle Scholar
  60. 60.
    Laudon H, Sjöblom V, Buffam I, Seibert J, Mörth CM (2007) The role of catchment scale and landscape characteristics for runoff generation of boreal streams. J Hydrol 344: 198–209CrossRefGoogle Scholar
  61. 61.
    Asano Y, Uchida T, Ohte N (2002) Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan. J Hydrol 261: 173–192CrossRefGoogle Scholar
  62. 62.
    Dunn SM, McDonnell JJ, Vaché KB (2007) Factors influencing the residence time of catchment waters: a virtual experiment research. Water Resour Res. doi: 10.1029/2006WR005393
  63. 63.
    Rodgers P, Soulsby C, Waldron S (2005) Stable isotope tracers as diagnostic tools in upscaling flow path understanding and residence time estimates in a mountainous mesoscale catchment. Hydrol Process 19: 2291–2307CrossRefGoogle Scholar
  64. 64.
    Jarsjö J, Bayer-Raich M, Ptak T (2005) Monitoring groundwater contamination and delineating source zones at industrial sites: uncertainty analyses using integral pumping tests. J Contam Hydrol 79: 107–134CrossRefGoogle Scholar
  65. 65.
    Jarsjö J, Bayer-Raich M (2008) Estimating plume degradation rates in aquifers: effect of propagating measurement and methodological errors. Water Resour Res. doi: 10.1029/2006WR005568
  66. 66.
    Cunningham JA, Fadel ZJ (2007) Contaminant degradation in physically and chemically heterogeneous aquifers. J Contam Hydrol 94: 293–304CrossRefGoogle Scholar
  67. 67.
    Turc L (1954) The water balance of soils. Relation between precipitation, evaporation and flow. Annal Agron 5: 491–569Google Scholar
  68. 68.
    Wendland F (1992) Die Nitratbelastung in den Grundwasserlandschaften der ‘alten’ Bundesländer (BRD), Berichte aus der Okologischen Forschung, Band 8, Forschungszentrum Jülich, JülichGoogle Scholar
  69. 69.
    Johansson P-O (2003) Drilling and sampling in soil. Installation of groundwater monitoring wells and surface water level gauges. Swedish Nuclear Fuel and Waste Management Company Report P-03-64, Stockholm, SwedenGoogle Scholar
  70. 70.
    Brunberg A-K, Carlsson T, Blomqvist P, Brydsten L, Strömgren M (2004) Identification of catchments, lake-related drainage parameters and lake habitats. Swedish Nuclear Fuel and Waste Management Company Report P-04-25, Stockholm, SwedenGoogle Scholar
  71. 71.
    de Wit MJM (2001) Nutrients fluxes at the river basin scale I: the PolFlow model. Hydrol Process 15: 743–759CrossRefGoogle Scholar
  72. 72.
    Greffe F (2003) Material transport in the Norrström drainage basin: integrating GIS and hydrological process modelling. Master Thesis, Royal Institute of Technology, Stockholm, SwedenGoogle Scholar
  73. 73.
    Meinardi C, Beusen A, Bollen M, Klepper O (1994) Vulnerability to diffuse pollution of European soils and groundwater. National Institute of Public Health and Environmental Protection (RIVM), Report 4615001002, Bilthoven, NetherlandsGoogle Scholar
  74. 74.
    Mourad DSJ (2002) Application of GIS-based modelling to assess nutrient loads in rivers of the Estonian part of the lake Peipsi basin. MANTRA-East working paper 5.1Google Scholar
  75. 75.
    Alexander RB, Elliott AH, Shankar U, McBride GB (2002) Estimating the sources and transport of nutrients in the Waikato River Basin, New Zealand. Water Resour Res 38: 1268–1290CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Amélie Darracq
    • 1
    Email author
  • Georgia Destouni
    • 1
  • Klas Persson
    • 1
  • Carmen Prieto
    • 1
  • Jerker Jarsjö
    • 1
  1. 1.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden

Personalised recommendations