Advertisement

Environmental Fluid Mechanics

, Volume 10, Issue 1–2, pp 21–39 | Cite as

Suspended particulate matter dynamics in a particle framework

  • Ulf GräweEmail author
  • Jörg-Olaf Wolff
Original Article

Abstract

Suspended particulate matter (SPM) dynamics in ocean models are usually treated with an advection–diffusion equation for one or more sediment size classes coupled to the hydrodynamical part of the model. Numerical solution of these additional partial differential equations unavoidably introduces numerical diffusion, i.e. in the case of sharp gradients the possible occurrence of artificial oscillations and non-positivity. A Lagrangian particle-tracking model has been developed to simulate short-term SPM dynamics. Modelling individual sediment particles allows a straightforward physical interpretation of the processes. The tracking of large numbers of individual and independent particles (up to 25 million in total in a single sediment class) can be achieved on high performance computer clusters, due to efficient parallelisation of particle tracking. The movement of the particles is described by a stochastic differential equation, which is consistent with the advection–diffusion equation. Here, the concentration profile is represented by a set of independent moving particles, which are advected according to the 3D velocity field, while the diffusive displacements of the particles are sampled from a random distribution, which is related to the eddy diffusivity field. To account for erosion a new parameterisation is proposed. Three numerical particle tracking schemes (EULER, MILSTEIN and HEUN) are presented and validated in idealised test cases. Finally, the particle tracking algorithms are applied to a realistic scenario, a severe winter storm in the East Frisian Wadden Sea (southern North Sea). The comparison with observations and an Eulerian SPM transport model seems to indicate a somewhat better fidelity of the Lagrangian approach.

Keywords

Lagrangian particles Random walk Stochastic processes SPM transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold L (1974) Stochastic differential equations. Wiley, New YorkGoogle Scholar
  2. 2.
    Bartholomä A, Kubicki A, Badewien TH, Flemming BW (2008) Suspended sediment transport in the German Wadden Sea—seasonal variations and extreme events. Ocean Dyn 59(2): 213–225. doi: 10.1007/s10236-009-0193-6 CrossRefGoogle Scholar
  3. 3.
    Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions 1. Model description and validation. J Geophys Res 104: 7649–7666CrossRefGoogle Scholar
  4. 4.
    Brickman D, Smith PC (2001) Lagrangian stochastic modeling in coastal oceanography. J Atmos Ocean Technol 19: 83–99CrossRefGoogle Scholar
  5. 5.
    Burchard H, Bolding K (2002) GETM a general estuarine transport model. Sci Doc EUR 20253 EN. Institute for Environ and Sustainability, IspraGoogle Scholar
  6. 6.
    Burchard H, Petersen O, Rippeth TP (1998) Comparing the performance of the k-ε and the Mellor- Yamada two-equation turbulence models. J Geophys Res 103: 10543–10554CrossRefGoogle Scholar
  7. 7.
    Burchard H, Bolding K, Umlauf L (2007) GETM—General Estuarine Transport Model, source code and test case documentation. http://getmeu/indexphp
  8. 8.
    Cencini M, Bec J, Biferale L, Boffetta G, Celani A, Lanotte AS, Musacchio S, Toschi F (2006) Dynamics and statistics of heavy particles in turbulent flows. J Turbul 7: 36CrossRefGoogle Scholar
  9. 9.
    Charles WM, van den Berg E, Lin HX, Heemink AW, Verlaan M (2008) Parallel and distributed simulation of sediment dynamics in shallow water using particle decomposition approach. J Parallel Distrib Comput 68: 717–728CrossRefGoogle Scholar
  10. 10.
    Chung TJ (2002) Computational fluid dynamics. Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Deleersnijder E, Beckers JM, Delhez EJM (2006a) The residence time of settling in the surface mixed layer. Environ Fluid Mech 6: 25–42CrossRefGoogle Scholar
  12. 12.
    Deleersnijder E, Beckers JM, Delhez EJM (2006b) On the behaviour of the residence time at bottom of the mixed layer. Environ Fluid Mech 6: 541–547CrossRefGoogle Scholar
  13. 13.
    Gayer G, Dick S, Pleskachevsky A, Rosenthal W (2006) Numerical modelling of suspended matter transport in the North Sea. Ocean Dyn 56: 62–77CrossRefGoogle Scholar
  14. 14.
    Hunter JR, Craig PD, Phillips HE (1993) On the use of random walk models with spatially variable diffusivity. J Comput Phys 106: 366–376Google Scholar
  15. 15.
    Kloeden PE, Platen E (1992) Numerical solutions of stochastic differential equations. Springer, BerlinGoogle Scholar
  16. 16.
    Krestenitis YN, Kombiadou KD, Savvidis YG (2007) Modelling the cohesive sediment transport in the marine environment: the case of Thermaikos Gulf. Ocean Sci 3: 91–104CrossRefGoogle Scholar
  17. 17.
    Lettmann K, Wolff J-O, Badewien TH (2009) Impact of wind and waves on suspended particulate matter fluxes in the East Frisian Wadden Sea (southern North Sea). Ocean Dyn 59(2): 239–262. doi: 10.1007/s10236-009-0194-5 CrossRefGoogle Scholar
  18. 18.
    Maier-Reimer E, Sündermann J (1982) On tracer methods in computational hydrodynamics, engineering applications of computational hydraulics, vol 1. Pitman Advanced Publishing Program, Boston, pp 198–217Google Scholar
  19. 19.
    Matsumoto M, Nishimura T (1998) Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul 8(1): 19Google Scholar
  20. 20.
    North EW, Hood RR, Chao S-Y, Sanford LP (2006) Using a random displacement model to simulate turbulent particle motion in a baroclinic frontal zone: a new implementation scheme and model performance tests. J Mar Syst 60: 365–380CrossRefGoogle Scholar
  21. 21.
    Partheniades E (1965) Erosion and deposition of cohesive soils. Proc ASCE. J Hydraul Div 91: 105–139Google Scholar
  22. 22.
    Pleskachevsky A, Gayer G, Horstmann J, Rosenthal W (2005) Synergy of satellite remote sensing and numerical modelling for monitoring of suspended particulate matter. Ocean Dyn 55: 2–9CrossRefGoogle Scholar
  23. 23.
    Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, CambridgeGoogle Scholar
  24. 24.
    Proehl JA, Lynch DE, McGillicuddy DJ Jr, Ledwell JR (2005) Modelling turbulent dispersion of the North Flank of Georges Bank using Lagrangian methods. Cont Shelf Res 25: 875–900CrossRefGoogle Scholar
  25. 25.
    Reuter R, Badewien TH, Bartholomä A, Braun A, Lübben A, Rullkötter J (2009) A hydrographic time-series station in the Wadden Sea (southern North Sea). Ocean Dyn 59(2): 195–211. doi: 10.1007/s10236-009-0196-3 CrossRefGoogle Scholar
  26. 26.
    Rolinski S, Umgiesser G (2005) Modelling short-term dynamics of suspended particulate matter in Venice Lagoon, Italy. Estuar Coast Shelf Sci 63: 561–576CrossRefGoogle Scholar
  27. 27.
    Soulsby R (1997) Dynamics of marine sands, a manual for practical applications. Thomas Telford, LondonGoogle Scholar
  28. 28.
    Spivakovskaya D, Heemink AW, Deleersnijder E (2007) Lagrangian modelling of multi-dimensional advection-diffusion with space-varying diffusivities: theory and idealised test cases. Ocean Dyn 57: 189–203CrossRefGoogle Scholar
  29. 29.
    Stanev EV, Wolff J-O, Burchard H, Bolding K, Flöser G (2003) On the circulation in the East Frisian Wadden Sea: numerical modelling and data analysis. Ocean Dyn 53: 27–51CrossRefGoogle Scholar
  30. 30.
    Stanev EV, Wolff J-O, Brink-Spalink G (2006) On the sensitivity of sedimentary system in the East Frisian Wadden Sea to sea level rise and magnitude of wind waves. Ocean Dyn 56: 266–283CrossRefGoogle Scholar
  31. 31.
    Stanev EV, Flemming BW, Bartholomä A, Staneva JV, Wolff J-O (2007) Vertical circulation in tidal inlets and back-barrier basins. Cont Shelf Res 27: 798–831CrossRefGoogle Scholar
  32. 32.
    Stanev EV, Brink-Spalink G, Wolff J-O (2007) Sediment dynamics in tidally dominated environments controlled by transport and turbulence: a case study for the East Frisian Wadden Sea. J Geophys Res 112: C04018CrossRefGoogle Scholar
  33. 33.
    Staneva J, Stanev EV, Wolff J-O, Badewien T, Reuter R, Flemming B, Bartholomä A, Bolding K (2008) Hydrodynamics and sediment dynamics in the German Bight. A focus on observations and numerical modelling in the East Frisian Wadden Sea. Cont Shelf Res 29: 302–319CrossRefGoogle Scholar
  34. 34.
    Stijnen JW, Heemink AW, Lin HX (2006) An efficient 3D particle transport model for use in stratified flows. Int J Numer Methods Fluids 51: 331–350CrossRefGoogle Scholar
  35. 35.
    Visser AW (1997) Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Mar Ecol Prog Ser 158: 275–281CrossRefGoogle Scholar
  36. 36.
    Visser AW (2008) Lagrangian modelling of plankton motion: from deceptively simple random walks to Fokker-Planck and back again. J Mar Syst 70: 287–299CrossRefGoogle Scholar
  37. 37.
    Warner JC, Sherwood CR, Arango HG, Signell RP (2005) Performance of four turbulence closure models implemented using a generic length scale method. Ocean Model 8: 81–113CrossRefGoogle Scholar
  38. 38.
    Winter C (2007) On the evaluation of sediment transport models in tidal environments. Sediment Geol 202: 562–571CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.ICBM, Physical Oceanography (Theory)University of OldenburgOldenburgGermany

Personalised recommendations