Turbulence characteristics within sparse and dense canopies

  • Laurence Pietri
  • Alexandre Petroff
  • Muriel Amielh
  • Fabien Anselmet
Original Article

Abstract

Boundary layer interactions with canopies control various environmental processes. In the case of dense and homogeneous canopies, the so-called mixing layer analogy is most generally used. When the canopy becomes sparser, a transition occurs between the mixing layer and the boundary layer perturbed by interactions between element wakes. This transition has still to be fully understood and characterized. The experimental work presented here deals with the effect of the canopy density on the flow turbulence and involves an artificial canopy placed in a fully developed turbulent boundary layer. One and two-component velocity measurements are performed, both within and above the canopy. The influence of the spacing between canopy elements is studied. Longitudinal velocity statistical moments and Reynolds stresses are calculated and compared to literature data. For spacings greater than the canopy height, evidences of this transition are found in the evolution of the skewness factor, shear length scale and mixing length.

Keywords

Turbulence Canopy flow Mixing layer flow Boundary layer flow Canopy density Spatial heterogeneity 

References

  1. 1.
    Amiro BD (1990) Comparison of turbulence statistics within three boreal forest canopies. Boundary-Layer Meteorol 51(1–2): 99–121. doi:10.1007/BF00120463 CrossRefGoogle Scholar
  2. 2.
    Aubrun S, Leitl B (2004) Development of an improved physical modelling of a forest area in a wind tunnel. Atmos Environ 38(18): 2797–2801. doi:10.1016/j.atmosenv.2004.02.035 CrossRefGoogle Scholar
  3. 3.
    Baldocchi DD, Hutchinson BA (1987) Turbulence in an almond orchard: vertical variations in turbulent statistics. Boundary-Layer Meteorol 40(1-2): 127–146. doi:10.1007/BF00140072 CrossRefGoogle Scholar
  4. 4.
    Belcher SE, Jerram N, Hunt JCR (2003) Adjustment of a turbulent boundary layer to a canopy of roughness elements. J Fluid Mech 488: 369–398. doi:10.1017/S0022112003005019 CrossRefGoogle Scholar
  5. 5.
    Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35: 469–496. doi:10.1146/annurev.fluid.35.101101.161147 CrossRefGoogle Scholar
  6. 6.
    Brunet Y, Finnigan JJ, Raupach MR (1994) A wind tunnel study of air flow in waving wheat: single-point velocity statistics. Boundary-Layer Meteorol 70(1-2): 95–132. doi:10.1007/BF00712525 CrossRefGoogle Scholar
  7. 7.
    Brunet Y, Irvine MR (2000) The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Meteorol 94(1): 139–163. doi:10.1023/A:1002406616227 CrossRefGoogle Scholar
  8. 8.
    Cheng H, Castro IP (2002) Near-wall flow over urban-like roughness. Boundary-Layer Meteorol 104(2): 229–259. doi:10.1023/A:1016060103448 CrossRefGoogle Scholar
  9. 9.
    Cionco RM (1972) A wind-profile index for canopy flow. Boundary-Layer Meteorol 3(2): 255–263. doi:10.1007/BF02033923 CrossRefGoogle Scholar
  10. 10.
    Cionco RM (1978) Analysis of canopy index values for various canopy densities. Boundary-Layer Meteorol 15(1): 81–93. doi:10.1007/BF00165507 CrossRefGoogle Scholar
  11. 11.
    Finnigan JJ (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–571. doi:10.1146/annurev.fluid.32.1.519 CrossRefGoogle Scholar
  12. 12.
    Ghisalberti M, Nepf H (2006) The structure of the shear layer in flows over rigid and flexible canopies. Environ Fluid Mech 6(3): 277–301. doi:10.1007/s10652-006-0002-4 CrossRefGoogle Scholar
  13. 13.
    Green SR, Grace J, Hutchings NJ (1995) Observations of turbulent air flow in three stands of widely spaced Sitka spruce. Agric Meteorol 74(3-4): 205–225. doi:10.1016/0168-1923(94)02191-L CrossRefGoogle Scholar
  14. 14.
    Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38(9): 1262–1292. doi:10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2 CrossRefGoogle Scholar
  15. 15.
    Irvine MR, Gardiner BA, Hill MK (1997) The evolution of turbulence across a forest edge. Boundary-Layer Meteorol 84(3): 467–496. doi:10.1023/A:1000453031036 CrossRefGoogle Scholar
  16. 16.
    Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New YorkGoogle Scholar
  17. 17.
    Macdonald RW (2000) Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol 97(1): 25–45. doi:10.1023/A:1002785830512 CrossRefGoogle Scholar
  18. 18.
    Massman WJ (1987) A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies. Boundary-Layer Meteorol 40(1-2): 179–197. doi:10.1007/BF00140075 CrossRefGoogle Scholar
  19. 19.
    Massman WJ (1997) An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure. Boundary-Layer Meteorol 83(3): 407–421. doi:10.1023/A:1000234813011 CrossRefGoogle Scholar
  20. 20.
    Meroney RN (1968) Characteristics of wind and turbulence in and above model forests. J Appl Meteorol 7(5): 780–788. doi:10.1175/1520-0450(1968)007<0780:COWATI>2.0.CO;2 CrossRefGoogle Scholar
  21. 21.
    Monismith SG (2007) Hydrodynamics of coral reefs. Annu Rev Fluid Mech 39: 37–55. doi:10.1146/annurev.fluid.38.050304.092125 CrossRefGoogle Scholar
  22. 22.
    Nepf H (1999) Drag, turbulence and diffusion in flow through emergent vegetation. Water Resour Res 35(2): 479–489. doi:10.1029/1998WR900069 CrossRefGoogle Scholar
  23. 23.
    Nepf H, Ghisalberti M, White B, Murphy E (2007) Retention time and dispersion associated with submerged aquatic canopies. Water Resour Res 43((4): W0422. doi:10.1029/2006WR005362 Google Scholar
  24. 24.
    Novak MD, Warland JS, Orchansky AL, Ketler R, Green S (2000) Wind tunnel and field measurements of turbulent flow in forests. Part I : uniformly thinned stands. Boundary-Layer Meteorol 95(3): 457–495. doi:10.1023/A:1002693625637 CrossRefGoogle Scholar
  25. 25.
    Petroff A, Mailliat A, Amielh M, Anselmet F (2008) Aerosol dry deposition on vegetative canopies. Part I: review of present knowledge. Atmos Environ 42(16): 3625–3653. doi:10.1016/j.atmosenv.2007.09.043 CrossRefGoogle Scholar
  26. 26.
    Petroff A, Mailliat A, Amielh M, Anselmet F (2008) Aerosol dry deposition on vegetative canopies. Part II: a new modelling approach and applications. Atmos Environ 42(16): 3654–3683. doi:10.1016/j.atmosenv.2007.12.060 CrossRefGoogle Scholar
  27. 27.
    Pietri L, Amielh M, Anselmet F (2006) Effect of the vegetation density on the turbulence properties in a canopy flow. In 13th international symposium on applications of laser techniques to fluid mechanics, 26–29 June, Lisbon, Portugal. http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2006/program.asp
  28. 28.
    Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG (2004) The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol 111(3): 565–587. doi:10.1023/B:BOUN.0000016576.05621.73 CrossRefGoogle Scholar
  29. 29.
    Pope SB (2000) Turbulent flows. Cambridge University Press,Google Scholar
  30. 30.
    Py C, de Langre E, Moulia B (2006) A frequency lock-in mechanism in the interaction between wind and crop canopies. J Fluid Mech 568: 425–449. doi:10.1017/S0022112006002667 CrossRefGoogle Scholar
  31. 31.
    Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44(1): 1–25CrossRefGoogle Scholar
  32. 32.
    Raupach MR, Coppin PA, Legg BJ (1986) Experiments on scalar dispersion within a model plant canopy. Part I: the turbulence structure. Boundary-Layer Meteorol 35(1-2): 21–52. doi:10.1007/BF00117300 CrossRefGoogle Scholar
  33. 33.
    Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies in vegetation canopies: the mixing layer analogy. Boundary-Layer Meteorol 78(3-4): 351–382. doi:10.1007/BF00120941 CrossRefGoogle Scholar
  34. 34.
    Raupach MR, Hughes DE, Cleugh HA (2006) Momentum absorption in rough-wall boundary layers with sparse roughness elements in random and clustered distributions. Boundary-Layer Meteorol 120(2): 201–218. doi:10.1007/s10546-006-9058-4 CrossRefGoogle Scholar
  35. 35.
    Righetti M, Armanini A (2002) Flow resistance in open channel flows with sparsely distributed bushes. J Hydrol (Amst) 269(1–2): 55–64. doi:10.1016/S0022-1694(02)00194-4 CrossRefGoogle Scholar
  36. 36.
    Ruijgrok W, Tieben H, Eisinga P (1997) The dry deposition of particles to a forest canopy: a comparison of model and experimental results. Atmos Environ 31(3): 399–415. doi:10.1016/S1352-2310(96)00089-1 CrossRefGoogle Scholar
  37. 37.
    Scurlock JMO, Asner GP, Gower ST (2001) Worlwide historical estimates of leaf area index, 1932–2000. Report ORNL/TM-2001/268, Oak Ridge National Laboratory, U.S.A.Google Scholar
  38. 38.
    Shaw RH, Irvine I (1987) Calculation of velocity skewness in real and artificial canopies. Boundary-Layer Meteorol 39(4): 315–332. doi:10.1007/BF00125141 CrossRefGoogle Scholar
  39. 39.
    Shaw RH, Tavangar J, Ward DP (1983) Structure of the Reynolds stress in a canopy layer. J Clim Appl Meteorol 22: 1922–1931. doi:10.1175/1520-0450(1983)022<1922:SOTRSI>2.0.CO;2 CrossRefGoogle Scholar
  40. 40.
    Slinn WGN (1982) Prediction for particle deposition to vegetative canopies. Atmos Environ 16: 1785–1794. doi:10.1016/0004-6981(82)90271-2 CrossRefGoogle Scholar
  41. 41.
    Wieringa J (1993) Representative roughness parameters for homogeneous terrain. Boundary-Layer Meteorol 63(4): 323–363. doi:10.1007/BF00705357 CrossRefGoogle Scholar
  42. 42.
    Zhu W, van Hout R, Luznik L, Kang HS, Katz J, Meneveau C (2006) A comparison of PIV measurements of canopy turbulence performed in the field and in a wind tunnel model. Exp Fluids 41(2): 309–318. doi:10.1007/s00348-006-0145-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Laurence Pietri
    • 1
  • Alexandre Petroff
    • 1
    • 2
  • Muriel Amielh
    • 1
  • Fabien Anselmet
    • 1
    • 3
  1. 1.I.R.P.H.E.Aix-Marseille Université, C.N.R.S., Technopôle de Château-GombertMarseille Cedex 13France
  2. 2.Air Quality Research DivisionEnvironment CanadaTorontoCanada
  3. 3.Ecole Centrale Marseille, Technopôle de Château-GombertMarseille Cedex 20France

Personalised recommendations