Environmental Fluid Mechanics

, Volume 8, Issue 2, pp 117–128 | Cite as

Spatial and temporal distribution of atmospheric mercury species over the Adriatic Sea

Original Article

Abstract

Field measurements of atmospheric mercury and related species were carried out during an intensive cruise campaign performed over the Adriatic sea from October 26th to November 12th, 2004 on board the R/V Urania. Hg0 ranged between 0.8 and 3.3 ng/m3 with an average of 1.6  ±  0.4 ng/m3 over the entire period. Hg(II) concentrations ranged from 0.1 to 62.8 pg/m3 with an average of 6.7  ±  11.7 pg/m3 whereas Hg-p levels were in a range of 0.04 and 51 pg/m3 with an average of 4.5  ±  8 pg/m3. Higher Hg0 and Hg-p concentrations were observed in the Gulf of Venice and Gulf of Trieste due primarily to air masses transported from the mainland reflecting the contribution from anthropogenic sources. In contrast, higher Hg(II) concentrations observed during the first period of the cruise campaign were likely due to the occurrence of photo-oxidants production which are the main players of the gas phase oxidation of \({\rm H}{\rm g}^{0}_{({\rm g})}\) to Hg(II)(g). These findings have been confirmed by the backward trajectories analysis of air masses crossing the studied area during selected days.

Keywords

Mercury speciation Halogens Marine boundary layer Adriatic sea Photochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pacyna EG, Pacyna JM and Pirrone N (2001). European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmos Environ 35: 2987–2996 CrossRefGoogle Scholar
  2. 2.
    Pirrone N, Ferrara R, Hedgecock IM, Kallos G, Mamane Y, Munthe J, Pacyna JM, Pytharoulis I, Sprovieri F, Voudouri A and Wangberg I (2003). Dynamic processes of mercury over the Mediterranean region: results from the Mediterranean Atmospheric Mercury Cycle System (MAMCS) project. Atmos Environ 37-S1: 21–39 CrossRefGoogle Scholar
  3. 3.
    Pirrone N, Sprovieri F, Hedgecock IM, Trunfio A, Cinnirella S (2005) Dynamic processes of atmospheric mercury in the Mediterranean region. In: Pirrone N, Mahaffey K (eds) Dynamics of mercury pollution on regional and global scales. Springer, Norwell, Chapter 23, pp 541–579Google Scholar
  4. 4.
    Pirrone N (2007) Special issue on biogechemical cycling of mercury and other trace contaminants in the Mediterranean Sea. Mar chem. 107:1–116CrossRefGoogle Scholar
  5. 5.
    Lindberg SE, Bullock R, Ebinghaus R, Engstrom D, Feng X, Fitzgerald W, Pirrone N, Presto E and Seigneur C (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 36: 19–32 CrossRefGoogle Scholar
  6. 6.
    Hedgecock IM and Pirrone N (2004). Chasing quicksilver: modeling the atmospheric lifetime of Hg0 (g) in the marine boundary layer at various latitudes. Environ Sci Technol 38: 69–76 CrossRefGoogle Scholar
  7. 7.
    Lindberg SE, Brooks S, Lin CJ, Scott KJ, Landis MS, Stevens RK, Goodsite M and Richter A (2002). Dynamic oxidation of gaseous mercury in the arctic troposphere at polar sunrise. Environ Sci Technol 36: 1245–1256 CrossRefGoogle Scholar
  8. 8.
    Lu JY, Schroeder WH, Barrie LA, Steffen A, Welch HE, Martin K, Lockhart L, Hunt RV, Boila G and Richter A (2001). Magnification of atmospheric mercury deposition to polar regions in springtime: the link to tropospheric ozone depletion chemistry. Geophys Res Lett 28(17): 3219–3222 CrossRefGoogle Scholar
  9. 9.
    Sprovieri F, Pirrone N, Hedgecock IM, Landis MS and Stevens RK (2002). Intensive atmospheric mercury measurements at Terra Nova Bay in Antarctica during November and December 2000. J Geophys Res 107(D23): 4722 CrossRefGoogle Scholar
  10. 10.
    Ebinghaus R, Kock HH, Temme C, Einax JW, Löwe A, Richter A, Burrows J and Schroeder WH (2002). Antarctic springtime depletion atmospheric mercury. Environ Sci Technol 36: 1238–1244 CrossRefGoogle Scholar
  11. 11.
    Sprovieri F, Pirrone N, Landis MS and Stevens RK (2005a). Oxidation of gaseous elemental mercury to gaseous divalent mercury during 2003 polar sunrise at Ny-Alesund. Environ Sci Technol 39(23): 9156–9165 CrossRefGoogle Scholar
  12. 12.
    Sprovieri F, Pirrone N, Landis MS and Stevens RK (2005b). Atmospheric mercury behavior at different altitudes at Ny Alesund during Spring 2003. Atmos Environ 39: 7646–7656 CrossRefGoogle Scholar
  13. 13.
    Horvat M, Kotnik J, Fajon V, Logar M, Zvonaric T and Pirrone N (2001). Speciation of mercuryin waters of the Mediterranean Sea. Mater Geoenviron 48: 224–252 Google Scholar
  14. 14.
    Horvat M, Kotnik J, Fajon V, Logar M, Zvonaric T and Pirrone N (2003). Speciation of mercury in surface and deep-sea waters in the Mediterranean Sea. Atmos Environ 37/S1: 93–108 CrossRefGoogle Scholar
  15. 15.
    Gardfeldt K, Sommar J, Ferrara R, Ceccarini C, Lanzillotta E, Munthe J, Wangberg I, Lindqvist O, Pirrone N., Sprovieri F and Pesenti E (2003). Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea. Atmos Environ 37-S1: 73–84 CrossRefGoogle Scholar
  16. 16.
    Kotnik J, Horvat M, Tessier E, Ogrinc N, Monperrus M, Amouroux D, Fajon V, Gibicar D, Zizek S, Horvat N, Sprovieri F and Pirrone N (2007). Mercury speciation in surface and deep waters of the Mediterranean Sea. Mar Chem 107: 13–30 CrossRefGoogle Scholar
  17. 17.
    Pirrone N, Costa P, Pacyna JM and Ferrara R (2001). Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region. Atmos Environ 35: 2997–3006 CrossRefGoogle Scholar
  18. 18.
    Hedgecock IM and Pirrrone N (2001). Mercury and photochemistry in the marine boundary layer-modelling studies suggest the in situ production of reactive gas phase mercury. Atmos Environ 35: 3055–3062 CrossRefGoogle Scholar
  19. 19.
    Hedgecock I, Pirrone N, Sprovieri F and Pesenti E (2003). Reactive gaseous mercury in the marine boundary layer: modeling and experimental evidence of its formation in the Mediterranean. Atmos Environ 37/S1: 41–50 CrossRefGoogle Scholar
  20. 20.
    Ariya PA, Khalizov A and Gidas A (2002). Reactions of gaseous mercury with atomic and molecular halogens: kinetics, product studies, and atmospheric implications. J Phys Chem A 106: 7310–7320 CrossRefGoogle Scholar
  21. 21.
    Mason RP, Lawson NM and Sheu G-R (2001). Mercury in the Atlantis Ocean: factors controlling air–sea exchange of mercury and its distribution in the upper waters. Deep-Sea Res II 48: 2829–2853 CrossRefGoogle Scholar
  22. 22.
    Laurier FJG, Mason RP, Whalin L, Kato S (2003) Reactive gaseous mercury formation in the North Pacific Ocean’s marine boundary layer: a potential role of halogen chemistry. J Geophys Res 108(D17):4529, doi:  10.1029/2003JD003625
  23. 23.
    Lamborg CH, Fitzgerald WF, O’Donnell J and Torgersen T (2002). A nonsteady state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim Cosmochim Acta 66: 1105–1118 CrossRefGoogle Scholar
  24. 24.
    Faganeli J, Horvat M, Covelli S, Fajon V, Logar M, Lipej L and Cermelj B (2001). Mercury in the waters of the gulf of trieste (northern Adriatic). RMZ—Mater Geoenviron 48(1): 144–150 Google Scholar
  25. 25.
    Ferrara R, Lanzillotta E and Ceccarini C (2001). Dissolved gaseous mercuryconcentration and mercuryevasional flux from seawater in front of a chlor-alkali plant. Environ Technol 22: 971–978 CrossRefGoogle Scholar
  26. 26.
    Landis MS, Stevens RK, Schaedlich F and Prestbo EM (2002). Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Environ Sci Technol 36: 3000–3009 CrossRefGoogle Scholar
  27. 27.
    Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY, Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD
  28. 28.
    Wängberg I, Munthe J, Pirrone N, Iverfeldt Å, Bahlman E, Costa P, Ebinghaus R, Feng X, Ferrara R, Gårdfeldt K, Kock H, Lanzillotta E, Mamane Y, Mas F, Melamed E, Osnat Y, Prestbo E, Sommar J, Schmolke S, Spain G, Sprovieri F and Tuncel G (2001). Atmospheric mercury distributions in North Europe and in the Mediterranean region. Atmos Environ 35: 3019–3025 CrossRefGoogle Scholar
  29. 29.
    Sprovieri F, Pirrone N, Gärdfeldt K and Sommar J (2003). Mercury speciation in the marine boundary layer along a 6000 km cruise path around the Mediterranean Sea. Atmos Environ 37: S6371 CrossRefGoogle Scholar
  30. 30.
    Costa M and Liss P (2000). Photoreduction and evaluation of mercury from seawater. Sci Total Environ 261: 125–135 CrossRefGoogle Scholar
  31. 31.
    Anderson M, Gardfeldt K, Wangberg I, Sprovieri F, Pirrone N and Lindqvist O (2007). Seasonal and daily variation of mercury evasion at coastal and off-shore sites at the Mediterranean Sea. Mar Chem 107: 104–116 CrossRefGoogle Scholar
  32. 32.
    Fantozzi L, Ferrara R, Frontini FP and Dini F (2007). Factors influencing the daily behaviour of dissolved gaseous mercury concentration in the Mediterranean Sea. Mar Chem 107: 4–12 CrossRefGoogle Scholar
  33. 33.
    Pirrone N, Hedgecock I and Forlano L (2000). The role of the ambient aerosol in the atmospheric processing of semi-volatile contaminants: a parameterised numerical model (GASPAR). J Geophys Res D105(8): 9773–9790 CrossRefGoogle Scholar
  34. 34.
    Hedgecock IM, Pirrone N, Trunfio GA, Sprovieri F (2006) Integrated mercury cycling, transport, and air–water exchange (MECAWEx) model. J Geophys Res 111 (D20302), doi:  10.1029/2006JD007117
  35. 35.
    Hedgecock IM, Pirrone N (2005) Modelling chemical and physical processes of Hg compounds in the marine boundary layer. In: Pirrone N, Mahaffey K (eds) Dynamics of mercury pollution on regional and global scales. Springer, Norwell, Chapter 13, pp 295–317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.CNRInstitute for Atmospheric Pollution (IIA)Rende, CosenzaItaly

Personalised recommendations