Environmental Fluid Mechanics

, Volume 7, Issue 5, pp 383–396 | Cite as

The inertial range “outer scale” and optical turbulence

  • Edmond M. DewanEmail author
  • Neil Grossbard
Original Article (Special Issue Section)


The crucial parameter used to calculate turbulence effects upon light waves propagating through the atmosphere is known as the structure constant, \(c_n^2\) . As Tatarski has shown, this parameter depends upon the “outer scale” of the inertial sub-range of the turbulence. Recently there have been successful predictions of astronomical “seeing” conditions at Mauna Kea Astronomical Observatory which have increased interest in this subject and in the use of the so-called “Dewan Optical Turbulence Model”. In the case of the Air Force, there has been a longstanding need for such optical turbulence prediction, especially in the stratosphere. In the past researchers have used a relation due to Tatarski, (which plays a prominent role in this model) in order to deduce values of the “outer scale” from \(c_n^2\) measurements. When doing this, they have been surprised to find values very much smaller than expected. The goal of the paper is to explain this unexpected result. As we will show, this result can be explained by two factors: (a) the average turbulent layer thicknesses are smaller than originally believed, and, more importantly, (b) only a minor fraction of the stratosphere is turbulent. In order to arrive at this conclusion, we used the high-resolution (10 m) wind profiles that were originally used to formulate the previously mentioned optical turbulence model.


Optical turbulence Inertial range turbulence Fluid dynamics Atmospheric Physics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barat J (1975). Etude experimentale de la structure du champ de turbulence dans la moyenne stratosphere. CR Acad Sci Paris 290(Series B): 691–694 Google Scholar
  2. 2.
    Barat J (1982). Some characteristics of clear-air turbulence in the middle stratosphere. J Atmos Sci 39: 2553 CrossRefGoogle Scholar
  3. 3.
    Beland R and Brown J (1988). A deterministic temperature model for stratospheric optical turbulence. Physica Scripta 37: 419–423 CrossRefGoogle Scholar
  4. 4.
    Businger S, McLaran R, Ogasawara R, Simons D and Wainscoat RJ (2002). Starcasting, (BAMS). Bull Am Met Soc 83: 858–871 CrossRefGoogle Scholar
  5. 5.
    Dewan EM, Grossbard N, Quesada AF, Good RE (1984) Spectral analysis of 10 m solar velocity profiles in the stratosphere. Geophys Res Lett 11:90–83. Also see the important correction in Dewan EM, Good RE (1984) Geophys Res Lett 11:629Google Scholar
  6. 6.
    Dewan EM and Good RE (1986). Saturation and the “Universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J Geoph Res 91(D2): 2742–2748 Google Scholar
  7. 7.
    Dewan EM, Grossbard N, Good RE and Brown J (1988). Power spectral density of zonal and meridional winds in the stratosphere. Physica Scripta 37: 154–157 CrossRefGoogle Scholar
  8. 8.
    Dewan EM, Good RE, Beland R, Brown J (1993) A model for \(c_n^2\) (optical turbulence) profiles using radiosonde data. (NTIS: ADA −279-399)Google Scholar
  9. 9.
    Friedlander SK and Topper L (1961). Turbulence. Interscience Publ. Inc., N.Y. Google Scholar
  10. 10.
    Frisch V (1995) Turbulence. Cambridge Univ. PressGoogle Scholar
  11. 11.
    Good RE, Beland RR, Murphy EA, Brown JH and Dewan EM (1988). Atmospheric models of optical turbulence. SPIE 928: 165–186 Google Scholar
  12. 12.
    Gurvich AS, Kaprov BM, Tsvang L and Yaglom K (1967). Empirical data on the small- scale structure of atmospheric turbulence. In: Yaglom, AM and Tatarski, VL (eds) Atmospheric turbulence and radio wave propagation, Nauka Publ., Moscow Google Scholar
  13. 13.
    Metcalf J, Glover K (1989) The fortieth anniversary history of weather radar research in the U.S. Air Force. Tech Rep AFGL TR-89-0032Google Scholar
  14. 14.
    Miles JW (1961). On the stability of heterogeneous shear flows, Part 1. J Fluid Mech 10: 496–512 CrossRefGoogle Scholar
  15. 15.
    Miles JW (1963). On the stability of heterogeneous shear flows, Part 2. J Fluid Mech 16: 209–227 CrossRefGoogle Scholar
  16. 16.
    Monin AS, Yaglom AM (1975) Statistical fluid mechanics, vol 2. MIT PressGoogle Scholar
  17. 17.
    Otterstein H (1969). Atmospheric structure and radar backscattering in clear air. Radio Science 4: 1179–1193 Google Scholar
  18. 18.
    Prandtl L (1953) Essentials of fluid dynamics. Hafner Publishing Co.Google Scholar
  19. 19.
    Quesada AF, Trowbridge CA (1976) Analysis of smoke trail photographs to determine stratospheric winds an shears. AFGL-TR-76-0243, ERP #580Google Scholar
  20. 20.
    Quesada AF (1982) High resolution stratospheric winds from chemical smoke trail experiments at white sands missile range and wallops island. AFGL-TR-82-0209Google Scholar
  21. 21.
    Rade L and Westergren B (2004). Mathematics handbook for science and engineering, 5th edn. Springer-Verlag, NY Google Scholar
  22. 22.
    Roadcap JR (1993). Cray-2 vital tool for atmospheric computing. Vector View 6(2): 1–4 Google Scholar
  23. 23.
    Roadcap JR, Morgenstern CD (1995) Comparison of observed and modeled isoplanatic angles using synoptic weather data. Proc SPIE 2375, pp 41–50Google Scholar
  24. 24.
    Rosenberg NW, Dewan EM (1975) Stratospheric turbulence and vertical effective diffusion coefficients. NTIS, ADA-019-708, (on NTIS web site)Google Scholar
  25. 25.
    Ruggiero FH, DeBenedictis DA (2002) Forecasting optical turbulence from mesoscale numerical weather prediction models. In: DOD high performance computer users group Conference. Austin Texas (published on line) Jan. 11–13Google Scholar
  26. 26.
    Tatarski VI (1961) Wave propagation in a turbulent medium. McGraw-Hill, N.Y., Also available as: Tartarski VT (1967) Wave propagation in a turbulent medium. DoverGoogle Scholar
  27. 27.
    Tatarski VI (1971) The effects of the turbulent atmosphere on wave propagation. NTIS TT 68-50464 U.S. Dept. of CommerceGoogle Scholar
  28. 28.
    Tennekes H and Lumley JL (1972). A first course in turbulence. MIT Press, Cambridge, Mass Google Scholar
  29. 29.
    Thorpe SA (1973a) CAT in the lab, Weather, Nov., 471Google Scholar
  30. 30.
    Thorpe SA (1973b). Experiments on instability and turbulence in a stratified sheer flow. J Fluid Mech 61(Part 4): 731–751 CrossRefGoogle Scholar
  31. 31.
    Thorpe SA (2005) The turbulent ocean. Cambridge PressGoogle Scholar
  32. 32.
    Trowbridge CA, Andrus WS (1978) An automated coordinate measurement system for smoke trail photographs. AFGL-TR-78-0231, 29 Sept. 1978, Final Report for 1 June 1977–31 Aug. 1978Google Scholar
  33. 33.
    Trowbridge CA (1984) Determination of stratospheric wind profiles by digital analysis. AFGL-TR-84-0041, Final Rept. 14 Aug. 81–14 Aug. 83Google Scholar
  34. 34.
    VanZandt TE, Green JL, Gage KS and Clark WJ (1978). Vertical profiles of refractivity turbulence structure constant. Radio Sci 13: 819–829 Google Scholar
  35. 35.
    Woodman R (1980). High altitude–resolution stratospheric measurements with the Arecibo 2380 MHz Radar. Radio Sci 15: 423–430 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Hanscom AFBUSA
  2. 2.Institute for Scientific ResearchBoston CollegeChestnut HillUSA

Personalised recommendations