Environmental Fluid Mechanics

, Volume 5, Issue 1–2, pp 109–134 | Cite as

Mass conservation and atmospheric dynamics in the Regional Atmospheric Modeling System (RAMS)

  • David Medvigy
  • Paul R. Moorcroft
  • Roni Avissar
  • Robert L. Walko


This paper examines the spatio-temporal patterns of atmospheric carbon dioxide transport predicted by the Regional Atmospheric Modeling System (RAMS). Forty-eight hour simulations over northern New England incorporating a simple representation of the diurnal summertime surface carbon dioxide forcing arising from biological activity indicate that, in its native formulation, RAMS exhibits a significant degree of mass non-conservation. Domain-wide rates of non-physical mass gain and mass loss are as large as three percent per day which translates into approximately eleven parts per million per day for carbon dioxide — enough to rapidly dilute the signature of carbon dioxide fluxes arising from biological activity. Analysis shows that this is due to the approximation used by RAMS to compute the Exner function. Substitution of the exact, physically complete equation improves mass conservation by two orders of magnitude. In addition to greatly improving mass conservation, use of the complete Exner function equation has a substantial impact on the spatial pattern of carbon dioxide predicted by the model, yielding predictions differing from a conventional RAMS simulation by as much as forty parts per million. Such differences have important implications both for comparisons of modeled atmospheric carbon dioxide concentrations to observations and for carbon dioxide inversion studies, which use estimates of atmospheric transport of carbon dioxide in conjunction with measurements of atmospheric carbon dioxide concentrations to infer the spatio-temporal distribution of surface carbon dioxide fluxes. Furthermore, use of the complete Exner function equation affects the vertical velocity and water mixing ratio fields, causing significant changes in accumulated precipitation over the region.

Key words

atmospheric inversions carbon dioxide mass conservation mesoscale modeling RAMS tracer transport 



Regional Atmospheric Modeling System


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eastman, J.L, Pielke, R.A. and Lyons, W.A.: 1995, Comparison of lake-breeze model simulations with tracer data, J. Appl. Meteorol. 34, 1398–1418.Google Scholar
  2. 2.
    Robertson, L., Langner, J. and Engardt, M.: 1999, An Eulerian limited-area atmospheric transport model, J. Appl. Meteorol. 38, 190–210.Google Scholar
  3. 3.
    Tulet, P., Maalej, A., Crassier, V. and Rosset, R.: 1999, An episode of photooxidant plume pollution over the Paris region, Atmos. Environ. 33, 1651–1662.Google Scholar
  4. 4.
    Uno, I.: 2001, Tropospheric chemical transport modeling over East Asia. In: T. Matsuno and H. Kida (eds.), Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, pp. 89–99, Terra Scientific Publishing Company, Tokyo.Google Scholar
  5. 5.
    Hacker, J.P., McKendry, I.G. and Stull, R.B.: 2001, Modeled downward transport of a passive tracer over Western North America during an Asian dust event in April 1998, J. Appl. Meteorol. 40, 1617–1628.Google Scholar
  6. 6.
    Biswas, J. and Rao, S.T.: 2001, Uncertainties in episodic ozone modeling stemming from uncertainties in the meteorological fields, J. Appl. Meteorol. 40, 117–136.Google Scholar
  7. 7.
    Turner, R. and Hurst, T.: 2001, Factors influencing volcanic ash dispersal from the 1995 and 1996 Eruptions of Mount Ruapehu, New Zealand, J. Appl. Meteorol. 40, 56–69.Google Scholar
  8. 8.
    San José, R., Pérez, J.L., Blanco, F., Barquín, R. and González, R.M.: 2002, Sensitivity of traffic emissions over the Iberian Peninsula by using MM5-CMAQ air quality modelling system. In: C.A. Brebbia and P. Zannetti (eds.), Development and Application of Computer Techniques to Environmental Studies IX, pp. 71–78, WIT Press, Boston.Google Scholar
  9. 9.
    Denning, A.S. et al.: 1999, Three-dimensional transport and concentration of SF6: A model intercomparison study (TransCom2), Tellus 51B, 266–297.Google Scholar
  10. 10.
    Kjellström, E., Holmém, K., Eneroth, K. and Engardt, M.: 2002, Summertime Siberian CO2 simulations with the regional transport model MATCH: A feasibility study of carbon uptake calculations from EUROSIB data, Tellus 54B, 834–849.Google Scholar
  11. 11.
    Knorr, W. and Heimann, M.: 1995, Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model, Tellus 47B, 471–489.Google Scholar
  12. 12.
    Longo, K.M. et al.: 1999, Correlation between smoke and tropospheric ozone concentration in Cuiabá during Smoke, Clouds and Radiation-Brazil (SCAR-B), J. Geophys. Res. 104(D10), 12113–12129.Google Scholar
  13. 13.
    Pielke, R.A. and Uliasz, M.: 1998, Use of meteorological models as input to regional and mesoscale air quality models — Limitations and strengths, Atmos. Environ. 32, 1455–1466.Google Scholar
  14. 14.
    Byun, D.: 1999, Dynamically consistent formulations in meteorological and air quality models for multiscale atmospheric studies. Part II: Mass conservation issues, J. Atmos. Sci. 56, 3808–3820.Google Scholar
  15. 15.
    Hariharan, R. and Venkatram, A.: 1996, The sensitivity of numerical advection schemes to mass inconsistency in wind fields. In: Preprints, 9th Joint Conference on Applications of Air Pollution Meteorology with A&WMA, January 28–February 2, 1996, Atlanta, Georgia, pp. 102–106, American Meteorological Society, Boston, MA.Google Scholar
  16. 16.
    Trenberth, K.E., Hurrell, J.W. and Solomon, A.: 1995, Conservation of mass in three dimensions in global analyses, J. Climate 8, 692–708.Google Scholar
  17. 17.
    Fan, S., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T. and Tans, P.: 1998, A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models, Science 282, 442–446.CrossRefPubMedGoogle Scholar
  18. 18.
    Lin, J.C., Gerbig, C., Wofsy, S.C., Andrews, A.E., Daube, B.C., Davis, K.J. and Grainger, A.: 2003, A near-field tool for simulating the upstream influence of atmospheric observations: The stochastic time-inverted Lagrangian transport (STILT) model, J. Geophys. Res. 108(D16), 4493, doi:10.1029/2002JD003161.Google Scholar
  19. 19.
    Tans, P.P., Conway, T.J. and Nakazawa, T.: 1989, Latitudinal distributions of the sources and sinks of atmospheric carbon dioxide derived from surface observations and an atmospheric transport model, J. Geophys. Res. 94(D4), 5151–5172.CrossRefGoogle Scholar
  20. 20.
    Kaminski, T., Knorr, W., Rayner, P.J., and Heimann, M.: 2002, Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle, Global Biogeochem. Cycles 16, 1066–1081.Google Scholar
  21. 21.
    Kaminski, T., Heimann, M. and Giering, R.: 1999, A coarse grid three-dimensional global inverse model of the atmospheric transport 2. Inversion of the transport of CO2 in the 1980s, J. Geophys. Res. 104(D15), 18555–18581.Google Scholar
  22. 22.
    Gloor, M., Fan, S.-M., Pacala, S., Sarmiento, J. and Ramonet, M.: 1999, A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale, J. Geophys. Res. 104(D12), 14245–14260.Google Scholar
  23. 23.
    Rodgers, C.D.: 2000, Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publishing Company, Inc., River Edge, NJ.Google Scholar
  24. 24.
    Poulos, G.S. and Pielke, R.A.: 1994, A numerical analysis of Los Angeles basin pollution transport to the Grand Canyon under stably stratified, southwest flow conditions, Atmos. Environ. 28, 3329–3357.Google Scholar
  25. 25.
    Uliasz, M.: 1993, The atmospheric mesoscale dispersion modeling system, J. Appl. Meteorol. 32, 139–149.Google Scholar
  26. 26.
    Pielke, R.A. et al.: 1992, A Comprehensive Meteorological Modeling System — RAMS, Meteorol. and Atmos. Phys. 49, 69–91.Google Scholar
  27. 27.
    Freitas, S.R., Silva Dias, M.A.F., Silva Dias, P.L., Longo, K.M., Artaxo, P., Andreae, M.O. and Fischer, H.: 2000, A convective kinematic trajectory technique for low-resolution atmospheric models, J. Geophys. Res. 105(D19), 24375–24386.Google Scholar
  28. 28.
    Kallos, G., Kotroni, V., Lagouvardos, K. and Papadopoulos, A.: 1998, On the long-range transport of air pollutants from Europe to Africa, Geophys. Res. Lett. 25(5), 619–622.Google Scholar
  29. 29.
    Levin, Z., Krichak, S.O. and Reisin, T.: 1997, Numerical simulation of dispersal of inert seeding material in Israel using a three-dimensional mesoscale model, J. Appl. Meteorol. 36, 474–484.Google Scholar
  30. 30.
    Buckley, R.L. and Kurzeja, R.J.: 1997, An observational and numerical study of the nocturnal sea breeze. Part II: Chemical transport, J. Appl. Meteorol. 36, 1599–1619.Google Scholar
  31. 31.
    Walko, R.L., Cotton, W.R., Meyers, M.P. and Harrington, J.Y.: 1995, New RAMS cloud microphysics parameterization, Part I: The single-moment scheme, Atmos. Res. 38, 29–62.Google Scholar
  32. 32.
    Klemp, J.B. and Wilhelmson, R.B.: 1978, The simulation of three-dimensional convective storm dynamics, J. Atmos. Sci. 35, 1070–1096.Google Scholar
  33. 33.
    Pielke Sr., R.A.: 2002, Mesoscale Meteorological Modeling, Academic Press, San Diego, CA.Google Scholar
  34. 34.
    Hollinger, D.Y., Goltz, S.M., Davidson, E.A., Lee, J.T., Tu, K. and Valentine, H.T.: 1999, Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest, Global Change Biol. 5, 891–902.Google Scholar
  35. 35.
    Klemp, J.B. and Wilhelmson, R.B.: 1978, Simulations of right-and left-moving storms produced through storm splitting, J. Atmos. Sci. 35, 1097–1110.Google Scholar
  36. 36.
    Grell, G.A.: 1993, Prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Wea. Rev. 121, 764–787.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • David Medvigy
    • 1
  • Paul R. Moorcroft
    • 1
  • Roni Avissar
    • 2
  • Robert L. Walko
    • 2
  1. 1.Department of Organismic & Evolutionary BiologyHarvard University, HUHCambridgeU.S.A.
  2. 2.Department of Civil and Environmental Engineering, Edmund T. Pratt School of EngineeringDuke UniversityDurhamU.S.A.

Personalised recommendations