Advertisement

Environmental Fluid Mechanics

, Volume 6, Issue 1, pp 25–42 | Cite as

The Residence Time of Settling Particles in the Surface Mixed Layer

  • Eric DeleersnijderEmail author
  • Jean-Marie Beckers
  • Eric J. M. Delhez
Article

Abstract

The transport from the upper mixed layer into the pycnocline of particles with negative buoyancy is considered. Assuming the hydrodynamic parameters to be time- independent, an adjoint model is resorted to that provides a general expression of the residence time in the mixed layer of the constituent under study. It is seen that the residence time decreases as the settling velocity increases or the diffusivity decreases. Furthermore, it is demonstrated that the residence time must be larger than z/w and smaller than h/w, where z, h and w denote the distance to the pycnocline, the thickness of the mixed layer and the sinking velocity. In the vicinity of the pycnocline, the residence time is not necessarily zero; its behaviour critically depends on the eddy diffusivity profile in this region. Closed-form solutions are obtained for constant and quadratic diffusivity profiles, which allows for an analysis of the sensitivity of the residence time to the Peclet number. Finally, an approximate value is suggested of the depth-averaged value of the residence time.

Keywords

adjoint model mixed layer pycnocline residence time settling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, I.R. 1982A simple theory of algal depositionFreshwater Biology12445449Google Scholar
  2. 2.
    Condie, S.A., Bormans, M. 1997The influence of density stratification on particle settling, dispersion and population growthJ. Theoretical Biology1876575Google Scholar
  3. 3.
    Condie, S.A. 1999Settling regimes for non-motile particles in stratified watersDeep-Sea Res. I46681699Google Scholar
  4. 4.
    Reynolds, C.S. 1997Vegetation Processes in the Pelagic: A Model for Ecosystem TheoryEcology InstituteOldendorf/Luhe GermanyExcellence in Ecology, Vol. 9Google Scholar
  5. 5.
    Waite, A.M., Nodder, S.D. 2001The effect of in situ iron addition on the sinking rates and export flux of Southern Ocean diatomsDeep-Sea Res. II4826352654CrossRefGoogle Scholar
  6. 6.
    Burchard, H. 2002Applied Turbulence Modelling in Marine WatersSpringer-VerlagBerlinLecture Notes in Earth Sciences, Vol. 100Google Scholar
  7. 7.
    de Boyer Montégut, C., Madec, G., Fischer, A.S., Lazar, A. and Iudicone, D.: 2004, Mixed layer depth over the global ocean: an examination of profile data and profile-based climatology, J. Geophys. Res., 109 (C12003), doi:10.1029/2004JC002378.Google Scholar
  8. 8.
    Umlauf, L., Burchard, H. 2005Second-order turbulence closure models for geophysical boundary layersA review of recent work. Cont. Shelf Res.25795827Google Scholar
  9. 9.
    Okubo, A. 1980Diffusion and Ecological Problems: Mathematical ModelsSpringer-VerlagBerlinBiomathematics, Vol. 10Google Scholar
  10. 10.
    Huisman, J., Sharples, J., Stroom, J.M., Visser, P.M., Kardinaal, W.E.A., Verspagen, J.M.H., Sommeijer, B. 2004Changes in turbulent mixing shift competition for light between phytoplankton speciesEcology8529602970Google Scholar
  11. 11.
    Huisman, J., Sommeijer, B. 2002Population dynamics of sinking phytoplankton in light-limited environments: simulation techniques and critical parametersJ. Sea Res.488396CrossRefGoogle Scholar
  12. 12.
    Huisman, J., Arrayas, M., Ebert, U., Sommeijer, B. 2002How do sinking phytoplankton species manage to persist?The American Naturalist159245254CrossRefGoogle Scholar
  13. 13.
    Delhez, E.J.M., Heemink, A.W., Deleersnijder, E. 2004Residence time in a semi-enclosed domain from the solution of an adjoint problemEstuarine, Coastal and Shelf Sci.61691702Google Scholar
  14. 14.
    Bolin, B., Rodhe, H. 1973A note on the concepts of age distribution and transit time in natural reservoirsTellus255862Google Scholar
  15. 15.
    Takeoka, H. 1984Fundamental concepts of exchange and transport time scales in a coastal seaCont. Shelf Res.3311326Google Scholar
  16. 16.
    Monsen, N.E., Cloern, J.E., Lucas, L.V., Monismith, S.G. 2002A comment on the use of flushing time, residence time, and age as transport time scalesLimnology and Oceanography4715451553Google Scholar
  17. 17.
    Holzer, M., Hall, T.M. 2000Transit-time and tracer-age distributions in geophysical flowsJ. Atmospheric Sci.5735393558CrossRefGoogle Scholar
  18. 18.
    Delhez, E.J.M., Campin, J.-M., Hirst, A.C., Deleersnijder, E. 1999Toward a general theory of the age in ocean modellingOcean Modelling11727CrossRefGoogle Scholar
  19. 19.
    Deleersnijder, E., Campin, J.-M., Delhez, E.J.M. 2001The concept of age in marine modelling. I. Theory and preliminary model resultsJ. Marine Systems28229267Google Scholar
  20. 20.
    Hunter, J.R., Craig, P.D., Phillips, H.E. 1993On the use of random walk models with spatially variable diffusivityJ. Comput. Phys.106366376Google Scholar
  21. 21.
    Visser, A.W. 1997Using random walk models to simulate the vertical distribution of particles in a turbulent water columnMarine Ecology Progress Series158275281Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Eric Deleersnijder
    • 1
    Email author
  • Jean-Marie Beckers
    • 2
  • Eric J. M. Delhez
    • 3
  1. 1.G. Lemaître Institute of Astronomy and Geophysics (ASTR) and Centre for Systems Engineering and Applied Mechanics (CESAME)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Océanographie Physique, Département d’astrophysique, géophysique et océanographie (AGO)Université de LiègeLiègeBelgium
  3. 3.Mathématiques Générales, Département d’aérospatiale, mécanique et matériaux (ASMA)Université de LiègeLiègeBelgium

Personalised recommendations