Environmental Fluid Mechanics

, Volume 5, Issue 5, pp 443–479 | Cite as

A Computational Fluid Dynamics Approach for Urban Area Transport and Dispersion Modeling

  • W. J. CoirierEmail author
  • D. M. Fricker
  • M. Furmanczyk
  • S. Kim


A simulation tool has been developed to model the wind fields, turbulence fields, and the dispersion of Chemical, Biological, Radiological and Nuclear (CBRN) substances in urban areas on the building to city blocks scale. A Computational Fluid Dynamics (CFD) approach has been taken that naturally accounts for critical flow and dispersion processes in urban areas, such as channeling, lofting, vertical mixing and turbulence, by solving the steady-state, Reynolds-Averaged Navier–Stokes (RANS) equations. Rapid generation of high quality cityscape volume meshes is attained by a unique voxel-based model generator that directly interfaces with common Geographic Information Systems (GIS) file formats. The flow and turbulence fields are obtained by solving the steady-state RANS equations using a collocated, pressure-based approach formulated for unstructured and polyhedral mesh elements. Turbulence modeling is based upon the Renormalization Group variant of the k–ε model (k–ε RNG). Neutrally buoyant simulations are made by prescribing velocity boundary condition profiles found by a power–law relationship, while turbulence quantities boundary conditions are defined by a prescribed mixing length in conjunction with the assumption of turbulence equilibrium. Dispersion fields are computed by solving an unsteady transport equation of a dilute gas, formulated in a Eulerian framework, using the velocity and turbulence fields found from the steady-state RANS solution. In this paper the model is explained and detailed comparisons of predicted to experimentally obtained velocity, turbulence and dispersion fields are made to neutrally stable wind tunnel and hydraulic flume experiments.


Urban area transport and dispersion computational fluid dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    National Research Council of the National Academies2003Tracking and Predicting the Atmospheric Dispersion of Hazardous Material Releases: Implications for Homeland SecurityNational Academic PressWashington DCGoogle Scholar
  2. 2.
    Sykes R.I., Henn D.S., Parker S.F., Gabruk R.S.: SCIPUFF – A generalized hazard dispersion model, American Meteorological Society, 9th Joint Conference on Air Pollution Meteorology.Google Scholar
  3. 3.
    Sykes, R.I., Gabruk, R.S. 1996A second-order closure model for the effect of averaging time on turbulent plume dispersionJ. Appl. Meteorol.3610381045Google Scholar
  4. 4.
    Lee, R.W. (2002). Moving the Hazard Prediction and Assessment Capability to a Distributed, Portable Architecture, prepared by Oak Ridge National Laboratory for U.S. Dept. of Energy, ORNL/TM-2002–145.Google Scholar
  5. 5.
    Bauer, T.J., Gibbs, R.L. 1996Software Users Manual for the ChemicallBiological Agent Vapor, Liquid and Solid Tracking (VLSTRACK) Computer ModelNaval Surface Warfare Center Dahlgren DivisionDalgren VA 224485100version 2.1.2 (X-Window)Google Scholar
  6. 6.
    Chang, J.C.: 1998, Evaluation of VLSTRACK with the Prairie Grass Field Data.Google Scholar
  7. 7.
    U.S. Environmental Protection Agency: 2003, AERMOD: latest features and evaluation results, EPA-454/R-03–003.Google Scholar
  8. 8.
    Hanna, S.R., Briggs, G.A. and Hosker, Jr. R.P.: 1982, Handbook on atmospheric diffusion, U.S. Dept of Energy, Technical Information Center DOE/TIC-11223.Google Scholar
  9. 9.
    Schnelle, K.B. 1987Atmospheric Diffusion Modeling, Encyclopedia of Physical Science and TechnologyAcademic Press Inc.Newyork192212Google Scholar
  10. 10.
    Decroix, D.S.: 2002, Large eddy simulation of urban dispersion during the URBAN2000 field program IOP-10, American Meteorological Society, 4th Symposium on the Urban Environment, pp. J30–J31.Google Scholar
  11. 11.
    Hall, D.J., Spanton, A.M., Macdonald, R.W., Walker, S. 1997A simple model for estimating dispersion in urban areas, Report CR 169/97, prepared for DERA Porton DownBuilding Research EstablishmentGarston Watford, UKGoogle Scholar
  12. 12.
    Hall D.J., Spanton A.M., Griffiths I.H., The UDM: A puff model for estimating dispersion in urban areas, In: 7th International Conference or Harmunisation within Atmospheric Dispersion Modeling for Regulatory Purposes, pp. 256–260.Google Scholar
  13. 13.
    Rockle, R. 1990Bestimmung der Stomungsverhaltnisse, im Bereich komplexer BebauunsstrukturenVom Fachbereich Mechanik, der Technischen Hochschule DarmstadtGermanyPhD ThesisGoogle Scholar
  14. 14.
    Pardyjak E.R., Brown M.J., Bagal N.: Improved velocity deficit parameterizations for a fast response urban wind model, American Meteorological Society, Symposium on Planning, Nowcasting, and Forecasting in the Urban Zone.Google Scholar
  15. 15.
    Bagal, N., Pardyjak, E.R. and Brown, M.J.: Improved upwind cavity parameterization for a fast response urban wind model, American Meteorological Society, Symposium on Planning, Nowcasting, and Forecasting in the Urban Zone.Google Scholar
  16. 16.
    Taylor, P.A., Salmon, J.R. 1993A model for the correction of surface wind data for sheltering by upwind obstaclesJ. Appl. Meteor.49226239Google Scholar
  17. 17.
    Kaplan, H., Dinar, N. 1996A Lagrangian dispersion model for calculating concentration distribution within a built-up domainAtmos. Environ.3041974207CrossRefGoogle Scholar
  18. 18.
    Ratto, C.F., Festa, R., Romeo, C., Frumento, O.A., Galluzzi, M. 1994Mass-consistent models for wind fields over complex terrain: the state of the artEnviron. Software9247268Google Scholar
  19. 19.
    Lim, D.W., Henn, D.S. and Sykes R.I.: 2003, UWM Technical Documentation (version 0.1). Titan Research and Technology Division, Titan Corporation.Google Scholar
  20. 20.
    Henn, , Douglas, , Sykes, R. 1999Large-eddy simulation of flow over wavy surfacesJ. Fluid Mech.3875112Google Scholar
  21. 21.
    Lee R.L, Calhoun R.J., Chan S.T., Leone Jr., J., Shinn J. and Stevens, D.E.: Urban dispersion CFD modeling, fact or fiction? 84th AMS Meeting, 3rd Symposium on Urban Environment.Google Scholar
  22. 22.
    Brown, M., Reisner, J., Smith, S. and Langley, D.: 2001, High Fidelity Urban Scale Modeling, Los Alamos National Laboratory, LA-UR-01–1422.Google Scholar
  23. 23.
    Calhoun, C., Chan, S., Gouveia, F., Lee, R., Leone, J., Shinn, J. and Stevens, D.: 1999, Flow Around a Complex Building: Comparisons Between Experimental and Modeled results, US Dept. of Energy, UCRL-ID-137240.Google Scholar
  24. 24.
    Krus, H.W., Haanstra, J.O., Hamm, R., Schruer, B. 2003Numerical simulations of wind measurements at Amsterdam Airport SchipholJ. Wind Eng. Ind. Aerodynam.9112151223Google Scholar
  25. 25.
    Riddle, A., Carruthers, D., Sharpe, A., McHugh, C., Stocker, J. 2004Comparisons between FLUENT and ADMS for atmospheric dispersion modelingAtmos. Environ.3810291038CrossRefGoogle Scholar
  26. 26.
    Tehranian, S., Hanna, S., Lohner, R. and Carissimo, B.: The numerical simulation of airflow and near-field dispersion around single buildings: several test cases, J. Wind Eng. Ind. Aerodynam. (in revision).Google Scholar
  27. 27.
    Cybyk, B.Z., Boris, J.P., Young, T.R., Emery, M.H., Cheatham, S.A. 2001Simulation of fluid dynamics around complex urban geometries, 30th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-01–0803RenoNVGoogle Scholar
  28. 28.
    Cybyk B.Z., Boris J.P., Young T.R., Lind C.A., Landsberg A.M. (1999). A detailed contaminant transport model for facility hazard assessment in urban areas, 30th Plasmadynamics and Lasers Conference, AIAA-99–3441, Norfolk, VA.Google Scholar
  29. 29.
    Sagrado, A., Breeck, J., Rambaud, P., Olivari, D. 2002Numerical and experimental modeling of pollutant dispersion in a street canyonJ. Wind Eng. Ind. Aerodynam.90321339Google Scholar
  30. 30.
    Cheng, Y., Lien, F.S., Yee, E., Sinclair, R. 2003A comparison of large eddy simulations with a standard k–ε Reynolds-averaged Navier–Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubesJ. Wind Eng. Ind. Aerodynam.9113011328Google Scholar
  31. 31.
    Nozawa, K., Tamura, T. 2002Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layerJ. Wind Eng. Ind. Aerodynam.9011511162Google Scholar
  32. 32.
    Daish, N.C., Britter, R.E., Linden, P.F., Jagger, S.F., and Carissimo B.: 1998, SMEDIS: scientific model evaluation of dense gas dispersion models, proceedings, 5th International Conference on Harmunization with Atmospheric Dispersion Modelling for Regulatory Purposes, Rhodes, Greece.Google Scholar
  33. 33.
    Carissimo, B., Jagger, S.F., Daish, N.C., Halford, A., Selmer-Olsen, S., Riikonen, K., Perroux, J.M., Wurtz, J., Bartzis, J., Duijm, N.J., Ham, K., Schatzmann, M., Hall, R. 2001The SMEDIS Database and Validation ExerciseInt. J. Environ. Pollut. 2001.16614649Google Scholar
  34. 34.
    Weil, J.C., Sykes, R.I., Venkatram, A. 1992Evaluating air-quality models: review and outlookJ. Appl. Meteorol.3111211145CrossRefGoogle Scholar
  35. 35.
    Easom, G.: 2000, Improved Turbulence Models for Computational Wind Engineering, PhD Thesis, University of Nottingham.Google Scholar
  36. 36.
    Mestayer, P.G., Sini, J.F., Rey, C., Anquentin, S., Kusuma Badri, S.M. and Lakehal, D.: Pollutant dispersion in the urban atmosphere: simulation of the turbulent flows using a k–ε model, ERCOFTAC Bull., 22–28.Google Scholar
  37. 37.
    Coirier, W.J., Fricker, D.M. and Furmanczyk, M.: 2003, Development of a High Fidelity PC Based Simulator for Modeling the Atmospheric Transport and Dispersion of Nuclear, Chemical, Biological and Radiological Substances in Urban Areas, DTRA SBIR Phase II Final Report: Contract: DTRAA01–01–0079.Google Scholar
  38. 38.
    Jiang, Y., Fricker, D.M. and Coirier, W.J.: 1999, Parallelization of a fully implicit unstructured pressure-based flow solver using MPI, AIAA-99–3274.Google Scholar
  39. 39.
    Anderson, D.A., Tannehill, J.C., Pletcher, R.H. 1984Computational Fluid Mechanics and Heat TransferHemisphereNew YorkGoogle Scholar
  40. 40.
    Launder, B.E., Spalding, D.B. 1974The numerical computation of turbulent flowsComp. Methods. Appl. Mech. Eng.3269289CrossRefGoogle Scholar
  41. 41.
    Dettering, H.W., Etling, D. 1985Application of the e–ε turbulence model to the atmospheric boundary layerBoundary Layer Meteorol.33113133Google Scholar
  42. 42.
    Yakhot, A., Orszag, S.A. and Yakhot, V: 1989, Numerical Modeling of Turbulence and Combustion Processes in Strongly Separated, Non-stationary Flows, Final Report NASA Contract: NAS3–25604.Google Scholar
  43. 43.
    Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G. 1992Development of turbulence models for shear flows by a double expansion techniquePhys. Fluids A.415101520CrossRefGoogle Scholar
  44. 44.
    Schlichting, H. 1979Boundary Layer Theory7McGraw-HillNew YorkGoogle Scholar
  45. 45.
    Shewchuk, J.R. 1996Triangle: Engineering a 2D Quality Mesh Generator and Delaunay TriangulatorFirst Workshop on Applied Computational GeometryACMGoogle Scholar
  46. 46.
    Ruppert, J. 1995A Delaunay refinement algorithm for quality 2-dimensional mesh generationJ. Algorithms.18548585CrossRefGoogle Scholar
  47. 47.
    Shewchuk, J.R. 1996Adaptive precision floating-point arithmetic and fast robust geometric predicatesJ. Discrete Comput. Geometry.18305363Google Scholar
  48. 48.
    CFD-ACE+, V2003 Users Manual, volumes 1 and 2.Google Scholar
  49. 49.
    Jiang, Y. and Przekwas, A.J.: 1994, Implicit, pressure-based incompressible Navier-Stokes solver for unstructured meshes, AIAA-94–0303.Google Scholar
  50. 50.
    Athavale, M.M., Jiang, Y. and Przekwas, A.J.: 1995, Application of an unstructured grid solution methodology to turbomachinery flows, AIAA-95–0174.Google Scholar
  51. 51.
    Karypis, G., Kumar, K. 1998Multilevel K-way partitioning scheme for irregular graphsJ. Parallel Distributed Comput.4896129Google Scholar
  52. 52.
    Macdonald, R., Carter, S. and Slawson, P.R.: 2000, Measurements of Mean Velocity and Turbulence Statistics in Simple Obstacle Arrays at 1:200 Scale, University of Waterloo, Thermal Fluids Report 2000–1, Rev. 2.Google Scholar
  53. 53.
    Macdonald, R., Carter, S. and Slawson, P.R.: 2001, Measurements of Mean plume Dispersion in Simple Obstacle Arrays at 1:200 Scale, University of Waterloo, Thermal Fluids Report 2001–2.Google Scholar
  54. 54.
    Brown, M.J., Lawson, R.E., DeCroix, D.S. and Lee, R.L.: 1999, Mean flow and turbulence measurements around a 2-D array of buildings in a wind tunnel, LA-UR-99–5395.Google Scholar
  55. 55.
    Brown, M.J., Lawson, R.E., DeCroix, D.S. and Lee, R.L.: 2001, Comparison of centerline velocity measurements obtained around 2D and 3D building arrays in a wind tunnel, LA-UR-01–4138.Google Scholar
  56. 56.
    Ciofalo, M., Collins, M.W. 1989k–ε predictions of heat transfer in turbulent recirculating flows using an improved wall treatmentNumer. Heat Transfer B.152147Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • W. J. Coirier
    • 1
    Email author
  • D. M. Fricker
    • 1
  • M. Furmanczyk
    • 1
  • S. Kim
    • 1
  1. 1.CFD Research CorporationHuntsvilleU.S.A

Personalised recommendations