Environmental Fluid Mechanics

, Volume 5, Issue 1–2, pp 135–167

Monitoring the transport of biomass burning emissions in South America

  • Saulo R. Freitas
  • Karla M. Longo
  • Maria A. F. Silva Dias
  • Pedro L. Silva Dias
  • Robert Chatfield
  • Elaine Prins
  • Paulo Artaxo
  • Georg A. Grell
  • Fernando S. Recuero


The atmospheric transport of biomass burning emissions in the South American and African continents is being monitored annually using a numerical simulation of air mass motions; we use a tracer transport capability developed within RAMS (Regional Atmospheric Modeling System) coupled to an emission model. Mass conservation equations are solved for carbon monoxide (CO) and particulate material (PM2.5). Source emissions of trace gases and particles associated with biomass burning activities in tropical forest, savanna and pasture have been parameterized and introduced into the model. The sources are distributed spatially and temporally and assimilated daily using the biomass burning locations detected by remote sensing. Advection effects (at grid scale) and turbulent transport (at sub-grid scale) are provided by the RAMS parameterizations. A sub-grid transport parameterization associated with moist deep and shallow convection, not explicitly resolved by the model due to its low spatial resolution, has also been introduced. Sinks associated with the process of wet and dry removal of aerosol particles and chemical transformation of gases are parameterized and introduced in the mass conservation equation. An operational system has been implemented which produces daily 48-h numerical simulations (including 24-h forecasts) of CO and PM2.5, in addition to traditional meteorological fields. The good prediction skills of the model are demonstrated by comparisons with time series of PM2.5 measured at the surface.

Key words

aerosol transport air pollution atmospheric modeling biomass burning climate change long-distance transport weather forecast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreae, M.: 1991, Biomass burning: its history, use and distribution and its impact on environmental quality and global climate. In: J.S. Levine (ed.), Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, pp. 3–21, MIT Press, Cambridge, Mass.Google Scholar
  2. 2.
    Kaufman, Y.: 1995, Remote sensing of direct and indirect aerosol forcing. In: R.J. Charlson and J. Heintzenberg (eds.), Aerosol Forcing of Climate, pp. 297–332, John Wiley & Sons Ltd., Chichester.Google Scholar
  3. 3.
    Scholes, R., Ward, D. and Justice, C.: 1996, Emissions of trace gases and aerosols particles due to vegetation burning in southern hemisphere Africa, J. Geophys. Res. 101(D19), 23667–23676.Google Scholar
  4. 4.
    Duncan, B., Martin, R., Staudt, A., Yevich, R. and Logan, J.: 2003, Interannual and seasonal variability of biomass burning emissions constrained by satellite observations, J. Geophys. Res. 108(D2), 4100.Google Scholar
  5. 5.
    Prins, E., Feltz, J., Menzel, W. and Ward, D.: 1998, An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America, J. Geophys. Res. 103(D24), 31821–31835.Google Scholar
  6. 6.
    Artaxo P., Gerab, F., Yamasoe, M. and Martins, J.: 1994, Fine mode aerosol composition in three long-term atmospheric monitoring sampling stations in the Amazon basin, J. Geophys. Res. 99, 22857–22867.Google Scholar
  7. 7.
    Artaxo P., Fernandes, E., Martins, J., Yamasoe, M., Hobbs, P., Maenhaut, W., Longo K. and Castanho, A.: 1998, Large-scale aerosol source apportionment in Amazonia, J. Geophys. Res. 103, 31837–31847.Google Scholar
  8. 8.
    Echalar, F., Artaxo, P., Martins, J., Yamasoe M. and Gerab, F.: 1998, Long-term monitoring of atmospheric aerosols in the Amazon basin: Source identification and apportionment, J. Geophys. Res. 103, 31849–31864.Google Scholar
  9. 9.
    Reid, J., Hobbs, P., Ferek, R., Blake, D., Martins, J., Dunlap, M. and Liousse, C.: 1998, Physical, chemical and optical properties of regional hazes dominated by smoke in Brazil, J. Geophys. Res. 103, 32059–32080.Google Scholar
  10. 10.
    Jacobson, M.: 2001, Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols, J. Geophys. Res. 106(D2), 1551–1568.Google Scholar
  11. 11.
    Sato, M., Hansen, J., Koch, D., Lacis, A., Ruedy, R., Dubovik, O., Holben, B., Chin, M. and Novakov, T..: 2003, Global atmospheric black carbon inferred from AERONET, Proc. Natl. Acad. Sci. USA, 100, 6319–6324.Google Scholar
  12. 12.
    Andreae, M.: 2001, The dark side of aerosols, Nature, 409, 671–672.Google Scholar
  13. 13.
    Cotton, W. and Pielke, R.: 1996, Human Impacts on Weather and Climate, Cambridge University Press, New York.Google Scholar
  14. 14.
    Rosenfeld, D.: 1999, TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Geophys. Res. Lett. 26, 3101.Google Scholar
  15. 15.
    Grell, G., Emeis, S., Stockwell, W., Schoenemeyer, T., Forkel, R., Michalakes, J., Knoche, R. and Seidl, W.: 2000, Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign, Atmos. Env. 34, 1435–1453.Google Scholar
  16. 16.
    Chatfield, R., Vastano, J., Singh, H. and Sachse, G.: 1996, A general model of how fire emissions and chemistry produce African/oceanic plumes (O3, CO, PAN, smoke), J. Geophys. Res. 101(D19), 24279–24306.Google Scholar
  17. 17.
    Chatfield, R., Guo, Z., Sachse, G., Blake, D. and Blake, N.: 2002, The subtropical global plume in the Pacific Exploratory Mission-Tropics A (PEM-Tropics A), PEM-Tropics B and the Global Atmospheric Sampling Program (GASP): How tropical emissions affect the remote Pacific. J. Geophys. Res., 107(D16), 4278.Google Scholar
  18. 18.
    Chin, M., Rood, R., Lin, S.-J., Muller, J.-F. and Thompson, A.: 2000, Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties, J. Geophys. Res. 105(D20), 24671–24687.Google Scholar
  19. 19.
    Brasseur, G., Hauglustaine, D., Walters, S., Rasch, P., Müller, J.-F., Granier, C. and Tie, X.: 1998, MOZART, a global chemical transport model for ozone and related chemical tracers, 1: Model description, J. Geophys. Res. 103(D21), 28265–28289.Google Scholar
  20. 20.
    Horowitz, L., Walters, S., Mauzerall, D., Emmons, L., Rasch, P., Granier, C., Tie, X., Lamarque, J.-F., Schultz, M. and Brasseur, G.: 2003, A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res. 108(D24), 4784.Google Scholar
  21. 21.
    Walko, R., Band, L., Baron J., Kittel, F., Lammers, R., Lee, T., Ojima, D., Pielke, R., Taylor, C., Tague, C., Tremback, C. and Vidale, P.: 2000, Coupled atmosphere-biophysics-hydrology models for environmental modeling, J. Appl. Meteorol. 39, 931–944.Google Scholar
  22. 22.
    Lobert, J.M. and Warnatz, J.: 1993, Emissions from the combustion process in vegetation. In: P.J. Crutzen and J. Goldamner (eds.), Fire in the Environment: Its Ecological, Atmospheric and Climatic Importance, pp. 15–38, John Wiley & Sons Ltd., Chichester.Google Scholar
  23. 23.
    Ward, E., Susott, R., Kaufman, J., Babbit, R., Cummings, D., Dias, B., Holben, B., Kaufman, Y., Rasmussen, R. and Setzer, A.: 1992, Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res. 97(D13), 14601–14619.Google Scholar
  24. 24.
    Ferek, J., Reid, J. and Hobbs, P.: 1996, Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. In: V. Kirchhoff (ed.), Smoke/Sulfate, Clouds and Radiation — Brazil (SCAR-B) Proceedings, pp. 35–39, Transtec Editorial, Fortaleza.Google Scholar
  25. 25.
    Andreae, M. and Merlet, P.: 2001, Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15, 955–966.Google Scholar
  26. 26.
    Pereira, M.: 1988, Detecção, Monitoramento e Análises de alguns Impactos Ambientais de Queimadas na Amazônia Usando Dados de Avião e dos Satélites NOAA e LANDSAT. Dissertaç ão de mestrado, INPE-4503-TDL/326, 268 p., Instituto Nacional de Pesquisas Espaciais (in Portuguese).Google Scholar
  27. 27.
    Setzer, A. and Pereira, M.: 1991, Amazonia biomass burnings in 1987 and an estimate of their tropospheric emissions, Ambio, 20, 19–22.Google Scholar
  28. 28.
    Prins, E. and Menzel, W.: 1992, Geostationary satellite detection of biomass burning in South America, Int. J. Remote Sens., 13, 2783–2799.Google Scholar
  29. 29.
    Matson, M. and Dozier, J.: 1981, Identification of sub-resolution high temperature sources using a thermal IR sensor, Photogram. Eng. Remote Sens., 47, 1311–1318.Google Scholar
  30. 30.
    Prins, E., Menzel, W. and Ward, D.: 1996, GOES-8 ABBA diurnal fire monitoring during SCAR-B. In: V. Kirchhoff (ed.), Smoke/Sulfate, Clouds and Radiation — Brazil (SCAR-B) Proceedings, pp. 153–157, Transtec Editorial, Fortaleza.Google Scholar
  31. 31.
    Chatfield, R. and Crutzen, P.: 1984, Sulfur dioxide in remote oceanic air: Cloud transport of reactive precursors, J. Geophys. Res., 89(D5), 7111–7132.Google Scholar
  32. 32.
    Pickering, K., Dickerson, R., Huffman, G., Boatman. J. and Schanot, A.: 1988, Trace gas transport in the vicinity of frontal convective clouds, J. Geophys. Res. 93(D1), 759–773.Google Scholar
  33. 33.
    Chatfield, R. and Delany, A.: 1990, Convection links biomass burning to increased tropical ozone: However, models will tend to overpredict O3, J. Geophys. Res. 95(D12), 18473–18488.CrossRefGoogle Scholar
  34. 34.
    Thompson, A., Pickering, K., Dickerson, R., Ellis, Jr. W., Jacob, D., Scala, J., Tao, W.-K., McNamara, D. and Simpson, J.: 1994, Convective transport over the Central United States and its role in regional CO and ozone budgets, J. Geophys. Res. 99(D09), 18703–18711.Google Scholar
  35. 35.
    Freitas, S., Silva Dias, M., Silva Dias, P., Longo, K., Artaxo, P., Andreae, M. and Fischer, H.: 2000, A convective kinematic trajectory technique for low-resolution atmospheric models, J. Geophys. Res. 105(D19), 24375–24386.Google Scholar
  36. 36.
    Longo, K., Thompson, A., Kirchhoff, V., Remer, L., Freitas S., Silva Dias, M., Artaxo, P., Hart, W., Spinhirne, J. and Yamasoe, M.: 1999, Correlation between smoke and tropospheric ozone concentration in Cuiabá during Smoke, Clouds and Radiation-Brazil (SCAR-B), J. Geophys. Res. 104(D10), 12113.Google Scholar
  37. 37.
    Freitas, S., Silva Dias, M. and Silva Dias, P.: 2000, Modeling the convective transport of trace gases by deep and moist convection, Hybrid Meth. Eng., 2(3), 317–330.Google Scholar
  38. 38.
    Galanter, M., Levy, II H. and Carmichael, G.: 2000, Impacts of biomass burning on tropospheric CO, NOx, and O3, J. Geophys. Res. 105(D5), 6633–6653.Google Scholar
  39. 39.
    Andreae, M., Artaxo, P., Fischer, H., Freitas, S., Grégoire, J.-M., Hansel, A., Hoor, P., Kormann, R., Krejci, R., Lange, L., Lelieveld, J., Lindinger, W., Longo, K., Peters, W., Reus, M., Scheeren, B., Silva Dias, M. A. F., Ström, J., Velthoven, P. F. J. and Williams, J.: 2001, Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region, Geophys. Res. Lett. 28(6), 951.Google Scholar
  40. 40.
    Tripoli, G. and Cotton, W.: 1982, The Colorado State University three-dimensional cloud/mesoscale model. Part I: General theoretical framework and sensitivity experiments, J. Res. Atmos. 16, 185–219.Google Scholar
  41. 41.
    Tremback, C.: 1990, Numerical Simulation of a Mesoscale Convective Complex: Model Development and Numerical Results. Ph.D. Dissertation, Atmos. Sci. Paper No. 465, Colorado State University, Dept. of Atmospheric Science, Fort Collins, CO.Google Scholar
  42. 42.
    Grell, G.: 1993, Prognostic evaluation of assumptions used by cumulus parameterization, Mon. Wea. Rev. 121 764–787.Google Scholar
  43. 43.
    Grell, G. and Devenyi, D.: 2002, A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett. 29, 1693.Google Scholar
  44. 44.
    Belward, A.: 1996, The IGBP-DIS global 1 km land cover data set (DISCover)-proposal and implementation plans, IGBP-DIS Working Paper No. 13, Toulouse, France.Google Scholar
  45. 45.
    Seinfeld, J. and Pandis, S.: 1998, Atmospheric Chemistry and Physics, John Wiley & Sons Inc., New York.Google Scholar
  46. 46.
    Mauzerall, D., Logan, J., Jacob, D., Anderson, B., Blake, D., Bradshaw, J., Heikes, B., Sachse, G., Singh, H. and Talbot, B.: 1998, Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic, J. Geophys. Res. 103(D7), 8401–8423.Google Scholar
  47. 47.
    Berge, E.: 1993, Coupling of wet scavenging of sulphur to clouds in a numerical weather prediction model, Tellus 45B, 1–22.Google Scholar
  48. 48.
    Chuang, C., Penner, J. and Edwards, L.: 1992, Nucleation scavenging of smoke particles and simulated drop size distributions over large biomass fires, J. Atmos. Sci. 14, 1264–1275.Google Scholar
  49. 49.
    Smagorinsky, J.: 1963, General circulation experiments with the primitive equations. Part I: The basic experiment, Mon. Wea. Rev. 91, 99–164.Google Scholar
  50. 50.
    Mellor, G. and Yamada, T.: 1974, A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci. 31, 1791–1806.Google Scholar
  51. 51.
    Tremback, C., Powell, J., Cotton, W. and Pielke, R.: 1987, The forward in time upstream advection scheme: Extension to higher orders, Mon. Wea. Rev. 115, 540–555.Google Scholar
  52. 52.
    Olivier, J., Bouwman, A., van der Maas, C., Berdowski, J., Veldt, C., Bloos, J., Visschedijk, A., Zandveld, P. and Haverlag, J.: 1996, Description of EDGAR Version 2.0: A Set of Global Emission Inventories of Greenhouse Gases and Ozone-Depleting Substances for All Anthropogenic and Most Natural Sources on a per Country Basis and on a 1×1 Degree Grid, RIVM Report 771060 002/TNO-MEP Report R96/119, National Institute of Public Health and the Environment, Bilthoven, the Netherlands.Google Scholar
  53. 53.
    Satyamurty, P., Nobre, C. and Silva Dias, P.: 1998, South America. In: D. Karoly and Vincent D., (eds.), Meteorology of the Southern Hemisphere, Meteorological Monographs 27 No. 49, pp. 119–139, American Meteorological Society, Boston.Google Scholar
  54. 54.
    McClaid-Cook, K., Selhorst, D., Widson, J., Pantoja, N., Brown, I., Prins, E., Feltz, J. and Fonseca Duarte, A. A.: 2003, Estimation of Amazon biomass burning events in Acre, Brazil using GOES-8 and AVHRR hot pixel data. In: The 99 th Annual Meeting of the Association of American Geographers, New Orleans, Lousiania, March 5–8.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Saulo R. Freitas
    • 1
  • Karla M. Longo
    • 1
  • Maria A. F. Silva Dias
    • 2
  • Pedro L. Silva Dias
    • 2
  • Robert Chatfield
    • 3
  • Elaine Prins
    • 4
  • Paulo Artaxo
    • 2
  • Georg A. Grell
    • 5
  • Fernando S. Recuero
    • 2
  1. 1.Center for Weather Prediction and Climate StudiesCPTEC/INPEBrazil
  2. 2.University of São PauloBrazil
  3. 3.NASA Ames Research CenterU.S.A.
  4. 4.NOAA/NESDIS/ORAMadisonU.S.A.
  5. 5.Cooperative Institute for Research in Environmental Science (CFRES)University at Colorado and NOAA Research — Forecast Systems LaboratoryBoulderU.S.A.

Personalised recommendations