Environmental Fluid Mechanics

, Volume 5, Issue 3, pp 247–265

A Fine-Scale k−ε Model for Atmospheric Flow over Heterogeneous Landscapes

Article

Abstract

A multi-purpose model for small-scale atmospheric flows over heterogeneous landscapes is being developed. The aim of this research is to build a tool able to predict the dynamical (wind, turbulence) and diffusive (gases, particles) fields over landscapes characterised by heterogeneous plant cover. In its present stage of development the model is based on the numerical integration of neutral atmospheric flow equations, using an energy-dissipation closure scheme and over a domain that may include vegetation layers. Three validation cases of the model are presented: (i) response of the airflow to a change in surface roughness; (ii) airflow within and above a horizontally homogeneous plant canopy; (iii) airflow over two complex forest-to-clearing and clearing-to-forest transitions. All simulations provide results in good agreement with the experimental data, except for turbulent kinetic energy just after a clearing-to-forest transition. This result is not surprising for a statistical k−ε model in a flow region characterised by strong distorsion and intermittent turbulence. However the overall good performance of the model is promising for environmental research at fine scales over heterogeneous landscapes.

Keywords

atmospheric flow discontinuity k−ε turbulence model landscape numerical simulation plant canopy roughness change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Detering, H.W., Etling, D. 1985Application of the E−ε turbulence model to the atmospheric boundary layerBoundary-Layer Meteorol33113133Google Scholar
  2. 2.
    Raupach, M.R., Shaw, R.H. 1982Averaging procedures for flow within vegetation canopiesBoundary-Layer Meteorol227990Google Scholar
  3. 3.
    Green, S.R. 1992Modelling turbulence air flow in a stand of widely-spaced treesPHOENICS: J. Comp. Fluid Dyn. Applic5294312Google Scholar
  4. 4.
    Liu, J., Black, T.A., Novak, M.D. 1996E-ε modelling of turbulent air flow downwind of a model forest edgeBoundary-Layer Meteorol772144Google Scholar
  5. 5.
    Wilson, J.D. 1988A second-order closure model for flow through vegetationBoundary-Layer Meteorol42371392Google Scholar
  6. 6.
    Wilson, J.D., Finnigan, J.J., Raupach, M.R. 1998A first-order closure for disturbed plant-canopy flows, and its application to winds in a canopy on a ridgeQuart. J. Roy. Meteorol. Soc124705732Google Scholar
  7. 7.
    Ayotte, K.W., Finnigan, J.J., Raupach, M.R. 1999A second-order closure for neutrally stratified vegetative canopy flowsBoundary-Layer Meteorol90189216Google Scholar
  8. 8.
    Bradley, E.F. 1968A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughnessQuart. J. Roy. Meteorol. Soc94361379Google Scholar
  9. 9.
    Brunet, Y., Finnigan, J.J., Raupach, M.R. 1994A wind tunnel study of air flow in waving wheat: single-point velocity statisticsBoundary-Layer Meteorol7095132Google Scholar
  10. 10.
    Raupach, M.R., Bradley, E.F., Ghadiri, H. 1987A Wind Tunnel Investigation into Aerodynamic Effect of Forest Clearings on the Nesting of Abbott’s Booby on Christmas IslandInternal report CSIRO Centre for environmental MechanicsCanberraGoogle Scholar
  11. 11.
    Kaimal, J.C., J.J., Finnigan 1994Boundary Layer Flows. Their Structure and MeasurementOxford University Press New YorkOxfordGoogle Scholar
  12. 12.
    Finnigan, J.J. 1985The Forest-Atmosphere Interaction: Turbulent Transport in Flexible Plant CanopiesB.A. Hutchison, B.B. HicksReidel, DordrechtGoogle Scholar
  13. 13.
    Raupach, M.R., Thom, A.S. 1981Turbulence in and above plant canopiesBoundary-Layer Meteorol1397129Google Scholar
  14. 14.
    Launder, B.E., Spalding, D.B. 1974The numerical computation of turbulent flowsComp. Meth. Appl. Mech. Eng3269289Google Scholar
  15. 15.
    Finnigan, J.J. 2000Turbulence in plant canopiesAnnu. Rev. Fluid Mech32519571Google Scholar
  16. 16.
    Sanz, C. 2003A note on k–ε modelling of vegetation canopy air-flowsBoundary-Layer Meteorol108191197Google Scholar
  17. 17.
    Weng, W., Taylor, P.A. 2003On modelling the one-dimensional atmospheric boundary layerBoundary-Layer Meteorol107371400Google Scholar
  18. 18.
    Khadra, K., Parneix, S., Angot, P., Caltagirone, J. 2000Fictitious domain approach for numerical modelling of Navier–Stokes equationsInt. J. Numer. Meth. Fluids34651684Google Scholar
  19. 19.
    Fortin, M., R., Glowinski 1982Méthodes de Lagrangien Augmenté; Application à la Résolution Numérique de Problèmes Aux LimitesMéthodes Mathématiques de l’InformatiqueDunodGoogle Scholar
  20. 20.
    Patankar, S. 1980Numerical Heat Transfer and Fluid FlowHemisphere Publishing CorporationNew YorkGoogle Scholar
  21. 21.
    VanderVorst, H.A. 1992A fast and smoothly converging variant of bi-cg for the solution of non symmetric linear systemSIAM J. Sci. Statis. Comut13631644Google Scholar
  22. 22.
    Dyer, A.J. 1974A review of flux-profile relationshipsBoundary-Layer Meteorol7363372Google Scholar
  23. 23.
    Elliott, W. 1992The growth of the atmospheric internal boundary layerTrans. Amer. Geophys. Union3910481054Google Scholar
  24. 24.
    Raupach, M.R., Finnigan, J.J., Brunet, Y. 1996Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogyBoundary-Layer Meteorol78351382Google Scholar
  25. 25.
    Raupach, M.R. 1989A practical Lagrangian method for relating scalar concentrations to source distributions in vegetation canopiesQuart. J. Roy. Meteorol. Soc115609632Google Scholar
  26. 26.
    Wilson, J.D., Flesch, T. 1999Wind and remnant tree sway in forest cutblocks III a windflow model to diagnose spatial variationAgric. For. Meteorol93259282Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Unité Ephyse, INRAVillenave d’OrnonFrance
  2. 2.Laboratoire MASTER-ENSCPBPessacFrance

Personalised recommendations