Advertisement

Environmental and Ecological Statistics

, Volume 23, Issue 4, pp 513–529 | Cite as

Functional clustering of varved lake sediment to reconstruct past seasonal climate

  • Per Arnqvist
  • Christian Bigler
  • Ingemar Renberg
  • Sara Sjöstedt de Luna
Article

Abstract

Annually laminated (varved) lake sediments constitutes excellent environmental archives, and have the potential to play an important role for understanding past seasonal climate with their inherent annual time resolution and within-year seasonal patterns. We propose to use functional data analysis methods to extract the relevant information with respect to climate reconstruction from the rich but complex information in the varves, including the shapes of the seasonal patterns, the varying varve thickness, and the non-linear sediment accumulation rates. In particular we analyze varved sediment from lake Kassjön in northern Sweden, covering the past 6400 years. The properties of each varve reflect to a large extent weather conditions and internal biological processes in the lake the year that the varve was deposited. Functional clustering is used to group the seasonal patterns into different types, that can be associated with different weather conditions. The seasonal patterns were described by penalized splines and clustered by the k-means algorithm, after alignment. The observed (within-year) variability in the data was used to determine the degree of smoothing for the penalized spline approximations. The resulting clusters and their time dynamics show great potential for seasonal climate interpretation, in particular for winter climate changes.

Keywords

Climate Clustering Curve registration Functional data analysis Penalized least squares Varved lake sediment 

Notes

Acknowledgments

We gratefully acknowledge valuable comments from two anonymous reviewers. This work was supported by the Swedish Research Council, (Project id D0520301 and 90432301).

References

  1. Abraham C, Cornillon PA, Matzner-Lober E, Molinari N (2003) Unsupervised curve clustering using B-splines. Scand J Stat 30:1–15CrossRefGoogle Scholar
  2. Ågren A, Buffam I, Jansson M, Laudon H (2007) Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. J Geophys Res Biogeosci 112:2156–2202Google Scholar
  3. Anderson NJ, Renberg I, Segerström U (1995) Diatom production responses to the development of early agriculture in a boreal forest lake-catchment (Kassjön, Northern Sweden). J Ecol 83:809–822CrossRefGoogle Scholar
  4. Anderson NJ, Arnqvist P, Petterson G, Renberg I, Sjöstedt de Luna S (2010) Climatic influence on the inter-annual variability of late-Holocene minerogenic sediment supply in a boreal forest catchment. Earth Surf Proc Land 35:390–398Google Scholar
  5. Beniston M (2005) Warm winter spells in the Swiss Alps: strong heat waves in a cold season? A study focusing on climate observations at the Saentis high mountain site. Geophys Res Lett 32:1–5CrossRefGoogle Scholar
  6. Büntgen U, Myglan VS, Charpentier Ljungqvist F, McCormick M, Di Cosmo N, Sigl M, Jungclaus J, Wagner S, Krusic PJ, Esper J, Kaplan JO, de Vaan MAC, Luterbacher L, Wacker L, Tegel W, Kirdyanov AV (2016) Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat Geosci 9:231–236Google Scholar
  7. Charpentier Ljungqvist F, Krusic PJ, Sundqvist HS, Zorita E, Brattström G, Frank D (2016) Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature 532:94–98Google Scholar
  8. Chiou JM, Li PL (2007) Functional clustering and identifying substructures of longitudinal data. J R Stat Soc Ser B 69:679–699CrossRefGoogle Scholar
  9. Crowley TJ, Hyde WT (2008) Transient nature of late Pleistocene climate variability. Nature 456:226–230CrossRefPubMedGoogle Scholar
  10. Eilers HCP, Marx DB (1996) Flexible smoothing with $B$-splines and penalties. Stat Sci 11:89–102CrossRefGoogle Scholar
  11. Gaffney S (2004) Probabilistic curve-aligned clustering and prediction with mixture models. Ph.D. Dissertation. Department of Computer Science, University of California, IrvineGoogle Scholar
  12. Gaffney S, Smyth P (2004) Joint probabilistic curve clustering and alignment. In: Saul LK, Weiss Y, Bottou L (ed) Advances in neural information processing systems, vol 17. MIT press, New York, pp 473–480Google Scholar
  13. García-Escudero LA, Gordaliza A (2005) A proposal for robust curve clustering. J Classif 22:185–201CrossRefGoogle Scholar
  14. Gervini D, Gasser T (2005) Nonparametric maximum likelihood estimation of the structural mean of a sample of curves. Biometrika 92:801–820CrossRefGoogle Scholar
  15. Granlund E (1943) Beskrivning till jordartskarta över Västerbottens län nedanför odlingsgränsen. Geological Survey of Sweden. Series Ca, 26. Stockholm (in Swedish)Google Scholar
  16. Heiri O, Brooks SJ, Renssen H, Bedford A, Hazekamp M, Ilyashuk B, Jeffers ES, Lang B, Kirilova E, Kuiper S, Millet L, Samartin S, Toth, M, Verbruggen F, Watson JE, van Asch N, Lammertsma E, Amon L, Birks HH, Birks HJB, Mortensen MF, Hoek WZ, Magyari E, Muñoz Sobrino C, Seppä H, Tinner W, Tonkov S, Veski S, Lotter AF (2014) Validation of climate model-inferred regional temperature change for late-glacial Europe. Nat Commun 5:4914Google Scholar
  17. James GM, Sugar CA (2003) Clustering for sparsely sampled functional data. J Am Stat Assoc 98:397–408CrossRefGoogle Scholar
  18. Kneip A, Li X, MacGibbon KB, Ramsay JO (2000) Curve registration by local regression. Can J Stat 28:19–29CrossRefGoogle Scholar
  19. Kneip A, Gasser T (1992) Statistical tools to analyze data representing a sample of curves. Ann Stat 20:1266–1305Google Scholar
  20. Kurtek S, Srivastava A, Klassen E, Ding Z (2012) Statistical modeling of curves using shapes and related features. J Am Stat Assoc 107:1152–1165CrossRefGoogle Scholar
  21. Laudon H, Sjöblom V, Buffham I, Seibert J, Mörth M (2007) The role of catchment scale and landscape characteristics for runoff generation of boreal streams. J Hydrol 344:198–209CrossRefGoogle Scholar
  22. Liu X, Müller HG (2004) Functional convex averaging and synchronization for time-warped random curves. J Am Stat Assoc 99:687–699CrossRefGoogle Scholar
  23. Liu X, Yang MCK (2009) Simultaneous curve registration and clustering for functional data. Comput Stat Data Anal 53:1361–1376CrossRefGoogle Scholar
  24. Ljungqvist FC, Krusic PJ, Sundqvist HS, Zorita E, Brattström G, Frank D (2016) Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature 532:94–98CrossRefPubMedGoogle Scholar
  25. Luan Y, Li H (2003) Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 19:474–482CrossRefPubMedGoogle Scholar
  26. MacQueen JB (1967) Some Methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, University of California Press, Berkeley, vol 1, pp 281–297Google Scholar
  27. Mann ME, Zhang ZH, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni FB (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ojala A, Alenius T, Seppä H, Giesecke T (2008) Integrated varve and pollen-based temperature reconstruction from Finland: evidence for Holocene seasonal temperature patterns at high latitudes. The Holocene 18:529–538CrossRefGoogle Scholar
  29. Ojala A, Francus P, Zolitschka B, Besonen M, Lamoureux SF (2012) Characteristics of sedimentary varve chronologies—a review. Quat Sci Rev 43:45–60CrossRefGoogle Scholar
  30. Ojala A, Kosonen E, Weckström J, Korkonen S, Korhola A (2013) Seasonal formation of clastic-biogenic varves: the potential for palaeoenvironmental interpretations. J Geol Soc Swed 135:237–248Google Scholar
  31. Ojala A, Alenius T (2005) 10000 years of interannual sedimentation recorded in the Lake Nautajärvi (Finland) clastic-organic varves. Paleoecology 219:285–302CrossRefGoogle Scholar
  32. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte S, Hegerl G, Howden M, Jiang K, Jimenez Cisneroz B, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O’Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner G-K, Pörtner H-O, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, T Stocker F, Tschakert P, van Vuuren D, van Ypserle J-P (2014) Climate change 2014: synthesis report. In: Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC 151Google Scholar
  33. Petterson G (1999) Image analysis, varved lake sediments and climate reconstruction. PhD thesis. Umeå universityGoogle Scholar
  34. Petterson G, Renberg I, Geladi P, Lindberg A, Lindgren F (1993) Spatial uniformity of sediment accumulation in varved lake sediments in northern Sweden. J Paleolimnol 9:195–208CrossRefGoogle Scholar
  35. Petterson G, Odgaard BV, Renberg I (1999) Image analysis as a method to quantify sediment components. J Paleolimnol 22:443–455CrossRefGoogle Scholar
  36. R Development Core Team (2014) R: a language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. http://www.R-project.org/
  37. Ramsay JO, Wickham H, Graves S, Hooker G (2014) FDA: functional data analysis. R package. http://CRAN.R-project.org/package=fda
  38. Ramsay JO, Li X (1998) Curve registration. J R Stat Soci Ser B 60:351–363CrossRefGoogle Scholar
  39. Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, BerlinGoogle Scholar
  40. Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric regression, 1st edn. Cambridge University Press, CambridgeGoogle Scholar
  41. Sangalli LM, Secchi P, Vantini S, Vitelli V (2009) A case study in explorative functional data analysis: geometrical features of the internal carotid artery. J Am Stat Assoc 104:37–48CrossRefGoogle Scholar
  42. Sangalli LM, Secchi P, Vantini S, Vitelli V (2010) k-mean alignment for curve clustering. Comput Stat Data Anal 54:1219–1233CrossRefGoogle Scholar
  43. Segerström U (1990) The natural Holocene vegetation development and the introduction of agriculture in northern Norrland, Sweden. In: Studies of soil, peat and especially varved lake sediments. PhD thesis, Ume UniversityGoogle Scholar
  44. Segerström U, Renberg I, Wallin J-E (1984) Annual sediment accumulation and land use history; investigations of varved lake sediments. Verh int Ver Limnol 22:1396–1403Google Scholar
  45. Serban N, Wasserman L (2005) Clustering after transformation and smoothing. J Am Stat Assoc 100:471CrossRefGoogle Scholar
  46. Sung Y, Genton MG (2011) Functional boxplots. J Comput Graph 20:316–334Google Scholar
  47. Tarpey T, Kinateder KJ (2003) Clustering functional data. J Classif 20:93–114CrossRefGoogle Scholar
  48. Tiljander M, Saarnisto M, Ojala A, Saarinen T (2003) A 3000-year palaeoenvironmental record from annually laminated sediment of Lake Korttajärvi, central Finland. Boreas 32:566–577CrossRefGoogle Scholar
  49. Whaba G, Wang Y (1995) Behavior near zero of the distribution of GCV smoothing parameter estimates. Stat Prob Lett 25:105–111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Mathematical StatisticsUmeå UniversityUmeåSweden
  2. 2.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden

Personalised recommendations