Environmental and Ecological Statistics

, Volume 23, Issue 1, pp 155–180 | Cite as

Automatic classification of climate change effects on marine species distributions in 2050 using the AquaMaps model

  • Gianpaolo CoroEmail author
  • Chiara Magliozzi
  • Anton Ellenbroek
  • Kristin Kaschner
  • Pasquale Pagano


Habitat modifications driven by human impact and climate change may influence species distribution, particularly in aquatic environments. Niche-based models are commonly used to evaluate the availability and suitability of habitat and assess the consequences of future climate scenarios on a species range and shifting edges of its distribution. Together with knowledge on biology and ecology, niche models also allow evaluating the potential of species to react to expected changes. The availability of projections of future climate scenarios allows comparing current and future niche distributions, assessing a species’ habitat suitability modification and shift, and consequently estimating potential species’ reaction. In this study, differences between the distribution maps of 406 marine species, which were produced by the AquaMaps niche models on current and future (year 2050) scenarios, were estimated and evaluated. Discrepancy measurements were used to identify a discrete number of categories, which represent different responses to climate change. Clustering analysis was then used to automatically detect these categories, demonstrating their reliability compared to human supervised classification. Finally, the distribution of characteristics like extinction risk (based on IUCN categories), taxonomic groups, population trends and habitat suitability change over the clustering categories was evaluated. In this assessment, direct human impact was neglected, in order to focus only on the consequences of environmental changes. Furthermore, in the comparison between two climate snapshots, the intermediate phases were assumed to be implicitly included into the model of the 2050 climate scenario.


AquaMaps Big Data Climate change Clustering analysis Ecological niche modelling GIS Maps comparison OGC standards Species distribution maps 



The reported work has been partially supported by the i-Marine project (FP7 of the European Commission, INFRASTRUCTURES-2011-2, Contract No. 283644) and by the Giovanisi project of the Presidency of the Tuscan Regional Government.

Supplementary material

10651_2015_333_MOESM1_ESM.xlsx (40 kb)
Supplementary material 1 (xlsx 40 KB)


  1. Anthony K, Maynard JA, Diaz-Pulido G, Mumby PJ, Marshall PA, Cao L, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Glob Change Biol 17(5):1798–1808CrossRefGoogle Scholar
  2. Araujo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33(10):1677–1688CrossRefGoogle Scholar
  3. Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11(9):1504–1513CrossRefGoogle Scholar
  4. Arrigo KR, van Dijken GL, Bushinsky S (2008) Primary production in the Southern Ocean, 1997–2006. J Geophys Res Oceans (1978–2012) 113(C8):15587–15600Google Scholar
  5. Assunçaoa MD, Calheirosb RN, Bianchia S, Nettoa MA, Buyyab R (2013) Big Data computing and clouds: challenges, solutions, and future directions. arXiv:1312.4722
  6. Barratt P, Cavanagh RD (2015) Heterodontus zebra in the IUCN red list of threatened species. Version 2014.3,
  7. Bellwood D, Hughes T, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429(6994):827–833CrossRefPubMedGoogle Scholar
  8. Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517CrossRefGoogle Scholar
  9. Berry P, Dawson T, Harrison P, Pearson R (2002) Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Glob Ecol Biogeogr 11(6):453–462CrossRefGoogle Scholar
  10. BEST Commission (2003) The national invasive species strategy for the Bahamas. BEST, Nassau, The Bahamas 40Google Scholar
  11. Botkin DB, Saxe H, Araujo MB, Betts R, Bradshaw RH, Cedhagen T, Chesson P, Dawson TP, Etterson JR, Faith DP, Ferrier S, Guisan A, Skjoldborg Hansen A, Hilbert DW, Loehle C, Margules C, New M, Sobel MJ, Stockwell DRB (2007) Forecasting the effects of global warming on biodiversity. Bioscience 57(3):227–236CrossRefGoogle Scholar
  12. Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19(14):R602–R614CrossRefPubMedGoogle Scholar
  13. Campbell P (2008) Editorial on special issue on big data: community cleverness required. Nature 455(7209):1CrossRefGoogle Scholar
  14. Candela L, Castelli D, Coro G, Lelii L, Mangiacrapa F, Marioli V, Pagano P (2014) An infrastructure-oriented approach for supporting biodiversity research. Ecol Inform 26:162–172. doi: 10.1016/j.ecoinf.2014.07.006 CrossRefGoogle Scholar
  15. Cao D, Song L, Zhang Y, Lv K, Hu Z (2011) Environmental preferences of Alopias superciliosus and Alopias vulpinus in waters near Marshall Islands. N Z J Mar Freshw Res 45(1):103–119CrossRefGoogle Scholar
  16. Carlens H, Lydersen C, Krafft BA, Kovacs KM (2006) Spring haul-out behavior of ringed seals (Pusa hispida) in Kongsfjorden. Svalbard. Mar Mamm Sci 22(2):379–393CrossRefGoogle Scholar
  17. Castelli D, Michel J (2011) D4SCIENCE-II—data infrastructures ecosystem for science. Project final report. Data Infrastructures Ecosystem for Science. Deliverable DNA1.7Google Scholar
  18. Castelli D, Taconet M, Garavelli S, Parker S (2013) iMarine infrastructure for data driven decision making and research: position paper. Presentation at the iMarine e-infrastructure Workshop for data-driven decision making and research, 14–15 May, Brussels, BelgiumGoogle Scholar
  19. Cheung WW, Lam VW, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10(3):235–251CrossRefGoogle Scholar
  20. Cheung WW, Lam VW, Sarmiento JL, Kearney K, Watson R, Zeller D, Pauly D (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Change Biol 16(1):24–35CrossRefGoogle Scholar
  21. Cheung WWL, Dunne J, Sarmiento JL, Pauly D (2011) Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J Mar Sci 68(6):1008–1018CrossRefGoogle Scholar
  22. Chin A, Kyne PM, Walker TI, McAULEY R (2010) An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia’s Great Barrier Reef. Glob Change Biol 16(7):1936–1953CrossRefGoogle Scholar
  23. Chuine I, Beaubien EG (2001) Phenology is a major determinant of tree species range. Ecol Lett 4(5):500–510CrossRefGoogle Scholar
  24. Cohen J et al (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46CrossRefGoogle Scholar
  25. Coro G, Gioia A, Pagano P, Candela L (2013) A service for statistical analysis of marine data in a distributed e-infrastructure. Boll di Geofis Teorica e Appl 54(1):68–70Google Scholar
  26. Coro G, Pagano P, Ellenbroek A (2014) Comparing heterogeneous distribution maps for marine species. GISci Remote Sens 51(5):593–611CrossRefGoogle Scholar
  27. Coro G, Candela L, Pagano P, Italiano A, Liccardo L (2015) Parallelizing the execution of native data mining algorithms for computational biology. Concurr Comput Pract Exp 27(17):4630–4644. doi: 10.1002/cpe.3435 CrossRefGoogle Scholar
  28. Corsi F, de Leeuw J, Skidmore A (2000) Modeling species distribution with GIS. Research Techniques in Animal Ecology, Columbia University Press, New York, pp 389–434Google Scholar
  29. Costa GC, Nogueira C, Machado RB, Colli GR (2010) Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers Conserv 19(3):883–899CrossRefGoogle Scholar
  30. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025):53–58CrossRefPubMedGoogle Scholar
  31. de La Beaujardière J (2004) OGC Web Map Service Interface, version 1.3.0. Open Geospatial ConsortiumGoogle Scholar
  32. Dulvy NK, Rogers SI, Jennings S, Stelzenmüller V, Dye SR, Skjoldal HR (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol 45(4):1029–1039CrossRefGoogle Scholar
  33. Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 151–176CrossRefGoogle Scholar
  34. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, pp 226–231Google Scholar
  35. Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378CrossRefGoogle Scholar
  36. Genner MJ, Sims DW, Wearmouth VJ, Southall EJ, Southward AJ, Henderson PA, Hawkins SJ (2004) Regional climatic warming drives long-term community changes of British marine fish. Proc R Soc Lond Ser B Biol Sci 271(1539):655–661CrossRefGoogle Scholar
  37. Hare JA, Alexander MA, Fogarty MJ, Williams EH, Scott JD (2010) Forecasting the dynamics of a coastal fishery species using a coupled climate-population model. Ecol Appl 20(2):452–464CrossRefPubMedGoogle Scholar
  38. Heino M, Engelhard GH, Godo OR (2008) Migrations and hydrography determine the abundance fluctuations of blue whiting (Micromesistius poutassou) in the Barents Sea. Fish Oceanogr 17(2):153–163CrossRefGoogle Scholar
  39. Hey AJ, Tansley S, Tolle KM et al (2009) The fourth paradigm: data-intensive scientific discovery, vol 1. Microsoft Research Redmond, WAGoogle Scholar
  40. Hiddink J, Ter Hofstede R (2008) Climate induced increases in species richness of marine fishes. Glob Change Biol 14(3):453–460CrossRefGoogle Scholar
  41. Hsieh CH, Kim HJ, Watson W, Di Lorenzo E, Sugihara G (2009) Climate-driven changes in abundance and distribution of larvae of oceanic fishes in the southern California region. Glob Change Biol 15(9):2137–2152CrossRefGoogle Scholar
  42. Hughes TP, Bellwood DR, Folke C, Steneck RS, Wilson J (2005) New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evolut 20(7):380–386CrossRefGoogle Scholar
  43. Hyrenbach KD, Veit RR (2003) Ocean warming and seabird communities of the southern California Current System (1987–98): response at multiple temporal scales. Deep Sea Res Part II Top Stud Oceanogr 50(14):2537–2565CrossRefGoogle Scholar
  44. IUCN (2015) The IUCN Red List of species.
  45. Jordà G, Marbà N, Duarte CM (2012) Mediterranean seagrass vulnerable to regional climate warming. Nat Clim Change 2(11):821–824CrossRefGoogle Scholar
  46. Kaschner K, Watson R, Trites A, Pauly D (2006) Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar Ecol Prog Ser 316:285–310CrossRefGoogle Scholar
  47. Knights B (2003) A review of the possible impacts of long-term oceanic and climate changes and fishing mortality on recruitment of anguillid eels of the Northern Hemisphere. Sci Total Environ 310(1):237–244CrossRefPubMedGoogle Scholar
  48. Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19(1):103–132CrossRefGoogle Scholar
  49. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 1:159–174CrossRefGoogle Scholar
  50. Lassalle G, Rochard E (2009) Impact of twenty-first century climate change on diadromous fish spread over europe, north africa and the middle east. Glob Change Biol 15(5):1072–1089CrossRefGoogle Scholar
  51. Lawler IR, Parra G, Noad M (2007) Vulnerability of marine mammals in the Great Barrier Reef to climate change.
  52. Levin SA, Lubchenco J (2008) Resilience, robustness, and marine ecosystem-based management. Bioscience 58(1):27–32CrossRefGoogle Scholar
  53. MacLeod CD (2009) Global climate change, range changes and potential implications for the conservation of marine cetaceans: a review and synthesis. Endanger Species Res 7(2):125–136CrossRefGoogle Scholar
  54. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 14. California, USA, pp 281–297Google Scholar
  55. Marzec RJ, Kim Y, Powell EN (2010) Geographical trends in weight and condition index of surfclams (Spisula solidissima) in the Mid-Atlantic Bight. J Shellfish Res 29(1):117–128CrossRefGoogle Scholar
  56. Mueter FJ, Litzow MA (2008) Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol Appl 18(2):309–320CrossRefPubMedGoogle Scholar
  57. Nakicenovic N, Swart R (2000) Special report on emissions scenarios. Special report on emissions scenarios, In: Nakicenovic N, Swart R (ed) pp 612 ISBN 0521804930, Cambridge University Press, Cambridge, UK, 1 July 2000Google Scholar
  58. Nye JA, Link JS, Hare JA, Overholtz WJ (2009) Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar Ecol Prog Ser 393:111–129CrossRefGoogle Scholar
  59. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evolut Syst 1:637–669CrossRefGoogle Scholar
  60. Pearson RG (2012) Species distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History.
  61. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–371CrossRefGoogle Scholar
  62. Pelleg D, Moore AW (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: ICML, pp 727–734Google Scholar
  63. Pellissier L, Bråthen KA, Vittoz P, Yoccoz NG, Dubuis A, Meier ES, Zimmermann NE, Randin CF, Thuiller W, Garraud L, Van Es J, Guisan A (2013) Thermal niches are more conserved at cold than warm limits in arctic-alpine plant species. Glob Ecol Biogeogr 22(8):933–941PubMedCentralCrossRefPubMedGoogle Scholar
  64. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308(5730):1912–1915CrossRefPubMedGoogle Scholar
  65. Ready J, Kaschner K, South AB, Eastwood PD, Rees T, Rius J, Agbayani E, Kullander S, Froese R (2010) Predicting the distributions of marine organisms at the global scale. Ecol Model 221(3):467–478. doi: 10.1016/j.ecolmodel.2009.10.025 CrossRefGoogle Scholar
  66. Reyes K (2015) AquaMaps: algorithm and data sources for aquatic organisms.
  67. Roeckner E, Arpe K, Bengtsson L, Brinkop S, Dümenil L, Esch M, Kirk E, Lunkeit F, Ponater M, Rockel B et al (1992) Simulation of the present-day climate with the ECHAM model: impact of model physics and resolution. Max-Planck-Institut für Meteorologie, HamburgGoogle Scholar
  68. Sardella BA, Sanmarti E, Kültz D (2008) The acute temperature tolerance of green sturgeon (Acipenser medirostris) and the effect of environmental salinity. J Exp Zool Part A Ecol Genet Physiol 309(8):477–483CrossRefGoogle Scholar
  69. Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Conserv 155:149–156CrossRefGoogle Scholar
  70. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464CrossRefGoogle Scholar
  71. Somero GN (2012) The physiology of global change: linking patterns to mechanisms. Ann Rev Mar Sci 4:39–61CrossRefPubMedGoogle Scholar
  72. Sorvari S, Brus M (2012) ENVRI—overcoming the environmental challenges with common solutions. EPOS newsletter, FebruaryGoogle Scholar
  73. Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Change 2(9):686–690CrossRefGoogle Scholar
  74. Sydeman W, García-Reyes M, Schoeman D, Rykaczewski R, Thompson S, Black B, Bograd S (2014) Climate change and wind intensification in coastal upwelling ecosystems. Science 345(6192):77–80CrossRefPubMedGoogle Scholar
  75. Thompson KF, Millar CD, Baker CS, Dalebout M, Steel D, van Helden AL, Constantine R (2013) A novel conservation approach provides insights into the management of rare cetaceans. Biol Conserv 157:331–340CrossRefGoogle Scholar
  76. Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10(12):2020–2027CrossRefGoogle Scholar
  77. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102(23):8245–8250PubMedCentralCrossRefPubMedGoogle Scholar
  78. Tzeng WN, Tseng YH, Han YS, Hsu CC, Chang CW, Di Lorenzo E, Hsieh Ch (2012) Evaluation of multi-scale climate effects on annual recruitment levels of the Japanese eel, Anguilla japonica, to Taiwan. PLoS One 7(2):e30,805Google Scholar
  79. Waldrop MM (2008) Science 2.0. Sci Am 298(5):68–73CrossRefPubMedGoogle Scholar
  80. Wassmann P, Duarte CM, Agusti S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Change Biol 17(2):1235–1249CrossRefGoogle Scholar
  81. Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci 105(48):18,848–18,853Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Gianpaolo Coro
    • 1
    Email author
  • Chiara Magliozzi
    • 1
  • Anton Ellenbroek
    • 2
  • Kristin Kaschner
    • 3
  • Pasquale Pagano
    • 1
  1. 1.Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo” – CNRPisaItaly
  2. 2.Food and Agriculture Organization of the United Nations (FAO)RomeItaly
  3. 3.Department of Biometry and Environmental Systems AnalysisAlbert-Ludwigs UniversityFreiburgGermany

Personalised recommendations