Environmental and Ecological Statistics

, Volume 22, Issue 2, pp 369–391 | Cite as

Multi-objective dynamic programming for spatial cluster detection

  • Gladston J. P. Moreira
  • Luís Paquete
  • Luiz H. Duczmal
  • David Menotti
  • Ricardo H. C. Takahashi
Article

Abstract

The detection and inference of arbitrarily shaped spatial clusters in aggregated geographical areas is described here as a multi-objective combinatorial optimization problem. A multi-objective dynamic programming algorithm, the Geo Dynamic Scan, is proposed for this formulation, finding a collection of Pareto-optimal solutions. It takes into account the geographical proximity between areas, thus allowing a disconnected subset of aggregated areas to be included in the efficient solutions set. It is shown that the collection of efficient solutions generated by this approach contains all the solutions maximizing the spatial scan statistic. The plurality of the efficient solutions set is potentially useful to analyze variations of the most likely cluster and to investigate covariates. Numerical simulations are conducted to evaluate the algorithm. A study case with Chagas’ disease clusters in Brazil is presented, with covariate analysis showing strong correlation of disease occurrence with environmental data.

Keywords

Arbitrarily shaped spatial cluster Chagas’ disease Dynamic programming Multi-objective optimization Spatial scan statistic 

References

  1. Beier R, Röglin H, Vöcking B (2007) The smoothed number of pareto optimal solutions in bicriteria integer optimization. Integer programming and combinatorial optimization. Lecture Notes in Computer Science. Springer, Berlin, vol 4513, pp 53–67Google Scholar
  2. Cançado AL (2009) Spatial clusters detection through multi-objective optimization. (in portuguese). Ph.D. thesis, Universidade Federal de Minas GeraisGoogle Scholar
  3. Cançado ALF, Duarte AR, Duczmal LH, Ferreira SJ, Fonseca CM, Gontijo ECDM (2010) Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters. Int J Health Geogr 9:1–17CrossRefGoogle Scholar
  4. Catalá SS (2011) The infra-red (ir) landscape of triatoma infestans. An hypothesis about the role of IR radiation as a cue for triatominae dispersal. Infect Genet Evol 11(8):1891–1898CrossRefPubMedGoogle Scholar
  5. Chen J, Roth R, Naito A, Lengerich E, MacEachren A (2008) Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of US cervical cancer mortality. Int J Health Geogr 7(1):57CrossRefPubMedCentralPubMedGoogle Scholar
  6. Dematteï C, Molinari N, Daurès J (2007) Arbitrarily shaped multiple spatial cluster detection for case event data. Comput Stat Data Anal 51:3931–3945CrossRefGoogle Scholar
  7. Duarte AR, Duczmal LH, Ferreira SJ, Cançado ALF (2010) Internal cohesion and geometric shape of spatial clusters. Environ Ecol Stat 17:203–229CrossRefGoogle Scholar
  8. Duczmal L, Kulldorff M, Huang L (2006) Evaluation of spatial scan statistics for irregularly shaped disease clusters. J Comput Graph Stat 15:428–442CrossRefGoogle Scholar
  9. Duczmal LH, Cançado ALF, Takahashi RHC, Bessegato LF (2007) A genetic algorithm for irregularly shaped spatial scan statistics. Comput Stat Data Anal 52:43–52CrossRefGoogle Scholar
  10. Duczmal LH, Cançado ALF, Takahashi RHC (2008) Geographic delineation of disease clusters through multi-objective optimization. J Comput Graph Stat 17:243–262CrossRefGoogle Scholar
  11. Duczmal LH, Moreira GJP, Takahashi RHC, Magalhães FCO, Bodevan EC (2011) Voronoi distance based prospective space-time scans for point data sets: a dengue fever cluster analysis in a southeast brazilian town. Int J Health Geogr 10(29):1–18PubMedCentralPubMedGoogle Scholar
  12. Ehrgott M (2000) Multicriteria optimization. Spring, BerlinCrossRefGoogle Scholar
  13. García-Alonso Carlos R, Pérez-Naranjo Leonor M, Fernández-Caballero Juan C (2011) Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms. Annals of operations research, pp 1–16Google Scholar
  14. Glaz J, Pozdnyakov V, Wallenstein S (eds) (2009) Scan statistics: methods and applications. Birkhuser BostonGoogle Scholar
  15. Gupta P, Agarwal V, Varshney M (2008) Design and analysis of algorithms. PHI Learning Private Limited, DelhiGoogle Scholar
  16. Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26:1481–1496CrossRefGoogle Scholar
  17. Kulldorff M (1999) Spatial scan statistics: models, calculations and applications. In: Glaz J, & Balakrishnan N (eds) Scan statistics and applications. Birkhauser, Boston, pp 303–322Google Scholar
  18. Kulldorff M, Nagarwalla N (1995) Spatial disease clusters: detection and inference. Stat Med 14(8):799–810CrossRefPubMedGoogle Scholar
  19. Kulldorff M, Tango T, Park PJ (2003) Power comparisons for disease clustering tests. Comput Stat Data Anal 42(4):665–684CrossRefGoogle Scholar
  20. Kulldorff M, Heffernan R, Hartman J, Assunção R, Mostashari F (2005) A space time permutation scan statistic for disease outbreak detection. Plos med 2(3):Google Scholar
  21. Kulldorff M, Huang M, Pickle L, Duczmal LH (2006) An elliptic scan statistic. Stat Med 25(22):3929–3943CrossRefPubMedGoogle Scholar
  22. Kulldorff M, Mostashari F, Duczmal LH, Yih KW, Kleinman K, Platt R (2007) Multivariate scan statistics for disease surveillance. Stat Med 26(8):1824–1833CrossRefPubMedGoogle Scholar
  23. Lawson AB (2009) Bayesian disease mapping: hierarchical modeling in spatial epidemiology. CRC Press, Boca RatonGoogle Scholar
  24. Lawson AB (2010) Hot-spot detection and clustering: ways and means. Environ Ecol Stat 17:231–245CrossRefGoogle Scholar
  25. Manning CD, Raghavan P, Schtze H (2008) Introduction to information retrieval. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Naus JI (1965) Clustering of random points in two dimensions. Biometrika 52(1/2):263–267CrossRefGoogle Scholar
  27. Neill DB (2008) Fast and flexible outbreak detection by linear-time subset scanning. Adv Dis Surveill 5:48Google Scholar
  28. Neill DB (2012) Fast subset scan for spatial pattern detection. J R Stat Soc Ser B 74:337–360CrossRefGoogle Scholar
  29. Nemhauser GL, Ullmann Z (1969) Discrete dynamic programming and capital allocation. Manag Sci 15(9):494–505CrossRefGoogle Scholar
  30. Oliveira F, Duczmal L, Cancado A, Tavares R (2011) Nonparametric intensity bounds for the delineation of spatial clusters. Int J Health Geogr 10(1):1CrossRefPubMedCentralPubMedGoogle Scholar
  31. Paquete L, Jaschob M, Klamroth K, Gorski J (2013) On a biobjective search problem in a line: formulations and algorithms. Theor Comput Sci 507:61–71CrossRefGoogle Scholar
  32. Patil GP, Taillie C (2004) Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environ Ecol Stat 11:183–197CrossRefGoogle Scholar
  33. Patil GP, Modarres R, Myers WL, Patankar P (2006) Spatially constrained clustering and upper level set scan hotspot detection in surveillance geoinformatics. Environ Ecol Stat 13:365–377CrossRefGoogle Scholar
  34. Speakman S, Neill DB (2010) Fast graph scan for scalable detection of arbitrary connected clusters. Proceedings of the 2009 international society for disease surveillance annual conferenceGoogle Scholar
  35. Tango T, Takahashi K (2005) A flexibly shaped spatial scan statistic for detecting clusters. Int J Health Geogr 4(11):1–15Google Scholar
  36. Wieland SC, Brownstein JS, Berger B, Mandl KD (2007) Density-equalizing euclidean minimum spanning trees for the detection of all disease cluster shapes. Proc Natl Acad Sci 104(22):9404–9409CrossRefPubMedCentralPubMedGoogle Scholar
  37. Wu X, Grubesic TH (2010) Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm. J Geogr Syst 12:409–433CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gladston J. P. Moreira
    • 1
  • Luís Paquete
    • 2
  • Luiz H. Duczmal
    • 3
  • David Menotti
    • 1
  • Ricardo H. C. Takahashi
    • 4
  1. 1.Department of ComputingUniversidade Federal de Ouro PretoOuro PretoBrazil
  2. 2.CISUC, Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal
  3. 3.Department of StatisticsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  4. 4.Department of MathematicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations