Estimating growth charts via nonparametric quantile regression: a practical framework with application in ecology

Abstract

We discuss a practical and effective framework to estimate reference growth charts via regression quantiles. Inequality constraints are used to ensure both monotonicity and non-crossing of the estimated quantile curves and penalized splines are employed to model the nonlinear growth patterns with respect to age. A companion R package is presented and relevant code discussed to favour spreading and application of the proposed methods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Bollaerts K, Eilers PHC, Aerts M (2006) Quantile regression with monotonicity restrictions using \(P\)-splines and the \(L_1\)-norm. Stat Model 6:189–207

    Article  Google Scholar 

  2. Bondell HD, Reich BJ, Wang H (2010) Non-crossing quantile regression curve estimation. Biometrika 97:825–838

    PubMed  Article  Google Scholar 

  3. Borghi E, de Onis M, Garza C, the WHO Multicentre Growth Reference Study Group (2006) Construction of the world health organization child growth standards: selection of methods for attained growth curves. Stat Med 25:247–265

    Google Scholar 

  4. Bosch RJ, Ye Y, Woodworth GG (1995) A convergent algorithm for quantile regression with smoothing splines. Comput Stat Data Anal 19:613–630

    Article  Google Scholar 

  5. Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 1:412–420

    Article  Google Scholar 

  6. Cole TJ, Green P (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11:1305–1319

    PubMed  Article  CAS  Google Scholar 

  7. Dette H, Volgushev S (2008) Non-crossing non-parametric estimates of quantile curves. J R Stat Soc B 70:609–627

    Article  Google Scholar 

  8. Duarte CM, Marbà N, Agawin N, Cebrian J, Enriquez S, Fortes MD, Gallegos ME, Merino M, Olesen B, Sand-Jensen K, Uri J, Vermaat J (1994) Reconstruction of seagrass dynamics:age determinations and associated tools for the seagrass ecologist. Mar Ecol Prog Ser 107:195–209, http://www.int-res.com/articles/meps/107/m107p195.pdf

  9. He X (1997) Quantile curves without crossing. Am Stat 51:186–192

    Google Scholar 

  10. He X, Shi P (1998) Monotone B-spline smoothing. J Am Stat Assoc 93:643–649

    Google Scholar 

  11. Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM (2004) Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. J Am Med Assoc 291:2847–2850

    Article  CAS  Google Scholar 

  12. Koenker R (2005) Quantile regression. Cambridge University Press, Cambridge

    Google Scholar 

  13. Koenker R (2011) quantreg: Quantile Regression. http://CRAN.R-project.org/package=quantreg, R package version 4.71

  14. Koenker R, Ng P, Portnoy S (1994) Quantile smoothing splines. Biometrika 81:673–680

    Article  Google Scholar 

  15. Liu J, Ji S, Ye J (2009) SLEP: sparse learning with efficient projections. Arizona State University, http://www.public.asu.edu/jye02/Software/SLEP

  16. Meyer M, Woodroofe M (2000) On the degrees of freedom in shape-restricted regression. Ann Stat 28:1083–1104

    Article  Google Scholar 

  17. Muggeo VMR (2003) Estimating regression models with unknown break-points. Stat Med 22:3055–3071

    PubMed  Article  Google Scholar 

  18. Muggeo VMR, Sciandra M, Augugliaro L (2012) Quantile regression via iterative least squares computations. J Stat Comput Simul 82:1557–1569

    Article  Google Scholar 

  19. Ng PT (1996) An algorithm for quantile smoothing splines. Comput Stat Data Anal 22:99–118

    Article  Google Scholar 

  20. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org, ISBN 3-900051-07-0

  21. Rigby RA, Stasinopoulos DM (2004) Smooth centile curves for skew and kurtotic data modelled using the box-cox power exponential distribution. Stat Med 23:3053–3076

    PubMed  Article  Google Scholar 

  22. Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape (with discussion). Appl Stat 54:507–554

    Google Scholar 

  23. Tomasello A, Calvo S, Maida GD, Lovison G, Pirrotta M, Sciandra M (2007) Shoot age as a confounding factor on detecting the effect of human-induced disturbance on posidonia oceanica growth performance. J Exp Mar Biol Ecol 343(2):166–175. doi:10.1016/j.jembe.2006.11.017, http://www.sciencedirect.com/science/article/pii/S0022098107000330

    Google Scholar 

  24. Wei Y, Pere A, Koenker R, He X (2006) Quantile regression methods for reference growth charts. Stat Med 25:1369–1382

    PubMed  Article  Google Scholar 

  25. Yuan M (2006) GACV for quantile smoothing splines. Comput Stat Data Anal 50:813–829

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for his/her valuable comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vito M. R. Muggeo.

Additional information

Handling Editor: Ashis SenGupta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muggeo, V.M.R., Sciandra, M., Tomasello, A. et al. Estimating growth charts via nonparametric quantile regression: a practical framework with application in ecology. Environ Ecol Stat 20, 519–531 (2013). https://doi.org/10.1007/s10651-012-0232-1

Download citation

Keywords

  • Growth charts
  • Nonparametric regression quantiles
  • Penalized splines
  • P. oceanica modelling
  • R software