Advertisement

Environmental and Ecological Statistics

, Volume 20, Issue 3, pp 377–397 | Cite as

A Bayesian framework for stable isotope mixing models

  • Erik B. ErhardtEmail author
  • Edward J. Bedrick
Article

Abstract

Stable isotope sourcing is used to estimate proportional contributions of sources to a mixture, such as in the analysis of animal diets and plant nutrient use. Statistical methods for inference on the diet proportions using stable isotopes have focused on the linear mixing model. Existing frequentist methods provide inferences when the diet proportion vector can be uniquely solved for in terms of the isotope ratios. Bayesian methods apply for arbitrary numbers of isotopes and diet sources but existing models are somewhat limited as they assume that trophic fractionation or discrimination is estimated without error or that isotope ratios are uncorrelated. We present a Bayesian model for the estimation of mean diet that accounts for uncertainty in source means and discrimination and allows correlated isotope ratios. This model is easily extended to allow the diet proportion vector to depend on covariates, such as time. Two data sets are used to illustrate the methodology. Code is available for selected analyses.

Keywords

Animal ecology Basic mixing model MCMC Resource utilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedrick EJ, Christensen R, Johnson W (1996) A new perspective on priors for generalized linear models. J Am Stat Assoc 910(436): 1450–1460CrossRefGoogle Scholar
  2. Ben-David M, Hanley TA, Klein DR, Schell DM (1997) Seasonal changes in diets of coastal and riverine mink: the role of spawning pacific salmon. Can J Zool 75: 803–811CrossRefGoogle Scholar
  3. Bickford CP, Mcdowell NG, Erhardt EB, Powers HH, Hanson DT (2009) High frequency field measurements of diurnal carbon isotope discrimination and internal conductance in a semi-arid species, juniperus monosperma. Plant Cell Environ 320(7): 796–810CrossRefGoogle Scholar
  4. Bond A, Diamond A (2011) Recent bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol Appl 21: 1017–1023PubMedCrossRefGoogle Scholar
  5. Bowen GJ, Revenaugh J (2003) the isotopic composition of modern meteoric precipitation. Water Resour Res 390(10): 1299Google Scholar
  6. Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ 15 N and Δ 13 C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 460(2): 443–453CrossRefGoogle Scholar
  7. Currin CA, Newell SY, Paerl HW (1995) The role of standing dead spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Marine Ecol Prog Ser Oldendorf 1210(1): 99–116CrossRefGoogle Scholar
  8. Deines P, Wooller MJ, Grey J. (2009) Unravelling complexities in benthic food webs using a dual stable isotope (hydrogen and carbon) approach. Freshw Biol 540(11): 2243–2251CrossRefGoogle Scholar
  9. DeNiro M, Epstein v. (1981) Influence of the diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 48: 341–351CrossRefGoogle Scholar
  10. Ehleringer JR, Bowen GJ, Chesson LA, West AG, Podlesak DW, Cerling TE (2008) Hydrogen and oxygen isotope ratios in human hair are related to geography. Proc Natl Acad Sci 1050(8): 2788CrossRefGoogle Scholar
  11. Evans Ogden LJ, Hobson KA, Lank DB (2004) Blood isotopic (δ 13C and δ 15N) turnover and diet-tissue fractionation factors in captive dunlin (Calidris alpina pacifica). The Auk 1210(1): 170–177CrossRefGoogle Scholar
  12. Evans Ogden LJ, Hobson KA, Lank DB, Bittman S (2005) Stable isotope analysis reveals that agricultural habitat provides an important dietary component for nonbreeding Dunlin. Avian Conserv Ecol 10(3). http://www.ace-eco.org/vol1/iss1/art3/
  13. Felicetti LA, Schwartz CC, Rye RO, Haroldson MA, Gunther KA, Phillips DL, Robbins CT (2003) Use of sulfur and nitrogen stable isotopes to determine the importance of whitebark pine nuts to yellowstone grizzly bears. Can J Zool 81: 763–770CrossRefGoogle Scholar
  14. Finlay JC, Doucett RR, McNeely C (2010) Tracing energy flow in stream food webs using stable isotopes of hydrogen. Freshw Biol 550(5): 941–951CrossRefGoogle Scholar
  15. Gelman A, Goegebeur Y, Tuerlinckx F, Van Mechelen I (2000) Diagnostic checks for discrete data regression models using posterior predictive simulations. J R Stat Soc Ser C (Appl Stat) 490(2): 247–268CrossRefGoogle Scholar
  16. Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 1200(3): 314–326CrossRefGoogle Scholar
  17. Hobson K, Wassenaar L (1999) Stable isotope ecology: an introduction Oecologia, Springer 120(3):312–313Google Scholar
  18. Hobson, KA, Wassenaar, LI (eds) (2008) Tracking animal migration with stable isotopes. Academic Press, LondonGoogle Scholar
  19. Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 1500(3): 447–461CrossRefGoogle Scholar
  20. Jones AW, Dalton CM, Stowe ES, Post DM. (2010) Contribution of declining anadromous fishes to the reproductive investment of a common piscivorous seabird, the double-crested cormorant (phalacrocorax auritus). The Auk 1270(3): 696–703CrossRefGoogle Scholar
  21. Kendall, C, McDonnell, JJ (eds) (1998) Isotope tracers in catchment hydrology. Elsevier, AmsterdamGoogle Scholar
  22. Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 100(4): 325–337CrossRefGoogle Scholar
  23. Martínez del Rio C, Wolf BO (February 2005) Mass-balance models for animal isotopic ecology. In: Matthias Starck J, Tobias Wang , Tobias Wang (eds) Physiological and ecological adaptations to feeding in vertebrates, chapter 6. Science Publishers, Enfield, pp 141–174Google Scholar
  24. MATLAB (2010) Version 7.10.0 (R2010a) The MathWorks, NatickGoogle Scholar
  25. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ 15N and animal age. Geochim Cosmochim Acta 48: 1135–1140CrossRefGoogle Scholar
  26. Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecol Lett 11: 470–480PubMedCrossRefGoogle Scholar
  27. Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Frontiers Ecol Environ 50(8): 429–436Google Scholar
  28. Oulhote Y, Bot BL, Deguen S, Glorennec P (2010) Using and interpreting isotope data for source identification. TrAC Trends Anal ChemGoogle Scholar
  29. Parnell A, Jackson A (2008) Siar: stable isotope analysis in R 2008. R package version 3.3.Google Scholar
  30. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 50(3): e9672CrossRefGoogle Scholar
  31. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18: 293–320CrossRefGoogle Scholar
  32. Peterson BJ, Howarth RW (1987) Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of sapelo island, georgia. Limnol oceanogr 32(6): 1195–1213CrossRefGoogle Scholar
  33. Phillips DL (2001) Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 127: 166–170CrossRefGoogle Scholar
  34. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127: 171–179CrossRefGoogle Scholar
  35. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 1360(2): 261–269CrossRefGoogle Scholar
  36. Phillips DL, Koch PL (2002) Incorporating concentration dependence in stable isotope mixing models. Oecologia 130: 114–125Google Scholar
  37. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumption. Ecology 83: 703–718CrossRefGoogle Scholar
  38. Rundel PW, Ehleringer JR, Nagy KA (1989) Stable isotopes in ecological research. Springer, New YorkCrossRefGoogle Scholar
  39. Semmens BX, Ward EJ, Moore JW, Darimont CT (2009) Quantifying inter-and intra-population niche variability using hierarchical Bayesian stable isotope mixing models. PLoS One 40(7): e6187CrossRefGoogle Scholar
  40. Solomon CT, Cole JJ, Doucett RR, Pace ML, Preston ND, Smith LE, Weidel BC (2009) The influence of environmental water on the hydrogen stable isotope ratio in aquatic consumers. Oecologia 1610(2): 313–324CrossRefGoogle Scholar
  41. Solomon CT, Carpenter SR, Clayton MK, Cole JJ, Coloso JJ, Pace ML, Vander Zanden MJ, Weidel BC (2011) Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology 920(5): 1115–1125CrossRefGoogle Scholar
  42. Ward EJ, Semmens BX, Schindler DE (2010) Including source uncertainty and prior information in the analysis of stable isotope mixing models. Environ Sci Technol 440(12): 4645–4650 ISSN 0013-936XCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA
  2. 2.Division of Epidemiology and Biostatistics, Department of Internal MedicineUniversity of New Mexico Health Sciences CenterAlbuquerqueUSA

Personalised recommendations