Advertisement

Environmental and Ecological Statistics

, Volume 20, Issue 3, pp 337–352 | Cite as

Delimiting synchronous populations from monitoring data

  • Christophe Giraud
  • Romain Julliard
  • Emmanuelle Porcher
Article
  • 160 Downloads

Abstract

We propose to investigate spatial synchrony in population dynamics from monitoring data. We develop a statistical procedure to delineate populations of sites with synchronous dynamics from short time series. The procedure relies on a new norm, the synchronous total variation norm, which promotes synchrony in the estimation of the sites dynamics. The method is tested on some synthetic data sets and is applied on data from the French breeding bird monitoring program.

Keywords

Monitoring data Penalized log-likelihood Primal-dual optimization Synchronous population 1-penalty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bickel P, Ritov Y, Tsybakov A (2009) Simultaneous analysis of lasso and dantzig selector. Ann Stat 37(4): 1705–1732CrossRefGoogle Scholar
  2. Candès E, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6): 717–772CrossRefGoogle Scholar
  3. Candès E, Tao T (2010) The power of convex relaxation: near-optimal matrix completion. IEEE Trans Inf Theory 56(5): 2053–2080CrossRefGoogle Scholar
  4. Chambolle A, Caselles V, Novaga M, Cremers D, Pock T (2010) An introduction to total variation for image analysis. Radon Ser Comp Appl Math 9: 1–78Google Scholar
  5. Devictor V, Julliard R, Couvet D, Jiguet F (2008) Birds are tracking climate warming, but not fast enough. Proc R Soc B Biol Sci 275: 2743–2748CrossRefGoogle Scholar
  6. Grenfell B, BjornstadO Kappey J (2001) Travelling waves and spatial hierarchies in measles epidemics. Nature 414: 716–723PubMedCrossRefGoogle Scholar
  7. Hassell M (2000) The spatial and temporal dynamics of hostparasitoid interactions. Oxford University Press, OxfordGoogle Scholar
  8. Heino M, Kaitala V, Ranta E, Lindstrom J (1997) Synchronous dynamics and rates of extinction in spatially structured populations. Proc R Soc Lond Ser B Biol Sci 264: 481–486CrossRefGoogle Scholar
  9. Jiguet F, Devictor V, Julliard R, Couvet D (2011) French citizens monitoring ordinary birds provide tools for conservation and ecological sciences. Acta Oecol. doi: 10.1016/j.actao.2011.05.003
  10. Liebhold A, Koenig W, Bjornstad O (2004) Spatial synchrony in population dynamics. Annu Rev Ecol Evol Syst 35: 467–490CrossRefGoogle Scholar
  11. Meinshausen N, Bühlman P (2006) High dimensional graphs and variable selection with the lasso. Ann Stat 34: 1436–1462CrossRefGoogle Scholar
  12. Moran P (1953) The statistical analysis of the Canadian lynx cycle. 2. Synchronization and meteorology. Aust J Zool 1: 291–298CrossRefGoogle Scholar
  13. Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1999) Dispersal and spatial scale affect synchrony in spatial population dynamics. Ecol Lett 2: 114–120CrossRefGoogle Scholar
  14. Ranta E, Kaitala V (1997) Travelling waves in vole population dynamics. Nature 390: 456–456CrossRefGoogle Scholar
  15. Ranta E, Kaitala V, Lindstrom J, Linden H (1995) Synchrony in population dynamics. Proc R Soc Lond Ser B Biol Sci 262: 113–118CrossRefGoogle Scholar
  16. Rudin L, Osher SJ, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60: 259–268CrossRefGoogle Scholar
  17. Schmeller DS (2008) European species and habitat monitoring: where are we now?. Biodivers Conserv 17: 3321–3326CrossRefGoogle Scholar
  18. Schmeller D, Henry P, Julliard R, Gruber B, Clobert J, Dziock F et al (2009) Advantages of volunteer-based biodiversity monitoring in Europe. Conserv Biol 23: 307–316PubMedCrossRefGoogle Scholar
  19. Sutcliffe OL, Thomas CD, Moss D (1996) Spatial synchrony and asynchrony in butterfly population dynamics. J Anim Ecol 65: 85–95CrossRefGoogle Scholar
  20. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58(1): 267–288Google Scholar
  21. Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101(476): 1418–1429CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Christophe Giraud
    • 1
  • Romain Julliard
    • 2
  • Emmanuelle Porcher
    • 2
  1. 1.CMAP, UMR CNRS 7641, Ecole PolytechniquePalaiseau CedexFrance
  2. 2.CERSP, UMR MNHN-CNRS-UPMC 7204, Muséum National d’Histoire NaturelleParisFrance

Personalised recommendations