Environmental and Ecological Statistics

, Volume 19, Issue 4, pp 601–626 | Cite as

How should regional biodiversity be monitored?

  • S. T. Buckland
  • S. R. Baillie
  • J. McP. Dick
  • D. A. Elston
  • A. E. Magurran
  • E. M. Scott
  • R. I. Smith
  • P. J. Somerfield
  • A. C. Studeny
  • A. Watt


We consider quantification of biodiversity in the context of targets set by the Convention on Biological Diversity. Implicit in such targets is a requirement to monitor biodiversity at a regional level. Few monitoring schemes are designed with these targets in mind. Monitored sites are typically not selected to be representative of a wider region, and measures of biodiversity are often biased by a failure to account for varying detectability among species and across time. Precision is often not adequately quantified. We review methods for quantifying the biodiversity of regions, consider issues that should be addressed in designing and evaluating a regional monitoring scheme, and offer a practical guide to what types of survey are appropriate for addressing different objectives for biodiversity monitoring.


Biodiversity Convention on biological diversity Diversity profiling Monitoring Survey design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baczkowski AJ, Joanes DN, Shamia GM (2000) The distribution of a generalized diversity index due to Good. Environ Ecol Stat 7: 329–342CrossRefGoogle Scholar
  2. Barabesi L, Fattorini L (1998) The use of replicated plot, line and point sampling for estimating species abundance and ecological diversity. Environ Ecol Stat 5: 353–370CrossRefGoogle Scholar
  3. Berger WH, Parker FL (1970) Diversity of planktonic foraminifera in deep-sea sediments. Science 168: 1345PubMedCrossRefGoogle Scholar
  4. Brooks TM, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16: 909–923CrossRefGoogle Scholar
  5. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, OxfordGoogle Scholar
  6. Buckland, ST, Anderson, DR, Burnham, KP, Laake, JL, Borchers, DL, Thomas, L (eds) (2004) Advanced distance sampling. Oxford University Press, OxfordGoogle Scholar
  7. Buckland ST, Magurran AE, Green RE, Fewster RM (2005) Monitoring change in biodiversity through composite indices. Philos Trans R Soc Lond B 360: 243–254CrossRefGoogle Scholar
  8. Buckland ST, Newman KB, Fernández C, Thomas L, Harwood J (2007) Embedding population dynamics models in inference. Stat Sci 22: 44–58CrossRefGoogle Scholar
  9. Buckland ST, Studeny AC, Magurran AE, Illian JB, Newson SE (2011a) The geometric mean of relative abundance indices: a biodiversity measure with a difference. Ecosphere 2:Article 100. doi: 10.1890/ES11-00186.1
  10. Buckland ST, Studeny AC, Magurran AE, Newson SE (2011) Biodiversity monitoring: the relevance of detectability. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 25–36Google Scholar
  11. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J-F, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328: 1164–1168PubMedCrossRefGoogle Scholar
  12. Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296: 904–907PubMedCrossRefGoogle Scholar
  13. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11: 265–270Google Scholar
  14. Chao A (2005) Species estimation and applications. In: Balakrishnan N, Read CB, Vidakovic B (eds) Encyclopedia of statistical sciences, 2nd edn, vol 12. Wiley, New York, pp 7907–7916Google Scholar
  15. Chao A, Shen T-J (2003) Nonparametric estimation of Shannon’s index of diversity when there are unseen species. Environ Ecol Stat 10: 429–443CrossRefGoogle Scholar
  16. Clark JS, Ferraz GA, Oguge N, Hays H, Dicostanzo J (2005) Hierarchical Bayes for structured, variable populations: from recapture data to life-history prediction. Ecology 86: 2232–2244CrossRefGoogle Scholar
  17. Cowell FA (1980) Generalized entropy and the measurement of distributional change. Eur Econ Rev 13: 147–159CrossRefGoogle Scholar
  18. Diamond JM (1989) The present, past and future of human-caused extinctions. Philos Trans R Soc Lond B 325: 469–477CrossRefGoogle Scholar
  19. EASAC (2009) Ecosystem services and biodiversity in Europe. The Royal Society, LondonGoogle Scholar
  20. Egoh B, Reyers B, Rouget M, Bode M, Richardson DM (2009) Spatial congruence between biodiversity and ecosystem services in South Africa. Biol Conserv 142: 553–562CrossRefGoogle Scholar
  21. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonGoogle Scholar
  22. Fewster RM, Buckland ST, Siriwardena GM, Baillie SR, Wilson JD (2000) Analysis of population trends for farmland birds using generalized additive models. Ecology 81: 1970–1984CrossRefGoogle Scholar
  23. Fewster RM, Buckland ST, Burnham KP, Borchers DL, Jupp PE, Laake JL, Thomas L (2009) Estimating the encounter rate variance in distance sampling. Biometrics 65: 225–236PubMedCrossRefGoogle Scholar
  24. Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Animal Ecol 12: 42–58CrossRefGoogle Scholar
  25. Freeman SN, Noble DG, Newson SE, Baillie SR (2007) Modelling population changes using data from different surveys: the common birds census and the breeding bird survey. Bird Study 54: 61–72CrossRefGoogle Scholar
  26. Gaston KJ, Blackburn TM, Goldewijk KK (2003) Habitat conversion and global avian biodiversity loss. Proc R Soc Lond B 270: 1293–1300CrossRefGoogle Scholar
  27. Gattone SA, Di Battista T (2009) A functional approach to diversity profiles. Appl Stat 58: 267–284CrossRefGoogle Scholar
  28. Gregory RD, van Strien A (2010) Wild bird indicators: using composite population trends of birds as measures of environmental health. Ornithol Sci 9: 3–22CrossRefGoogle Scholar
  29. Gregory RD, Vorisek P, Noble DG, van Strien A, Klvanova A, Eaton M, Gmelig Meyling AW, Joys A, Foppen RPB, Burfield IJ (2008) The generation and use of bird population indicators in Europe. Bird Conserv Int 18: S223–S244CrossRefGoogle Scholar
  30. Hedley SL, Buckland ST (2004) Spatial models for line transect sampling. J Agric Biol Environ Stat 9: 181–199CrossRefGoogle Scholar
  31. Heip C (1974) A new index measuring evenness. J Marine Biol Assoc UK 54: 555–557CrossRefGoogle Scholar
  32. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432CrossRefGoogle Scholar
  33. Hoffmann S, Hoffmann A (2008) Is there a ‘true’ diversity?. Ecol Econ 65: 213–215CrossRefGoogle Scholar
  34. Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75: 3–35CrossRefGoogle Scholar
  35. Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26: 2465–2466PubMedGoogle Scholar
  36. Jaynes ET (1965) Gibbs vs Boltzmann entropies. Am J Phys 33: 391–398CrossRefGoogle Scholar
  37. Jost L (2006) Entropy and diversity. OIKOS 113: 363–375CrossRefGoogle Scholar
  38. Kort JR (1981) Regional economic instability and industrial diversification in the US. Land Econ 57: 596–608CrossRefGoogle Scholar
  39. Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. OIKOS 76: 5–13CrossRefGoogle Scholar
  40. Lawton JH, May RM (1995) Extinction rates. Oxford University Press, OxfordGoogle Scholar
  41. Leinster T, Cobbold CA (2012) Measuring diversity: the importance of species similarity. Ecology 93: 477–489PubMedCrossRefGoogle Scholar
  42. Loh J, Green RE, Ricketts T, Lamoreux J, Jenkins M, Kapos V, Randers J (2005) The Living Planet Index: using species population time series to track trends in biodiversity. Philos Trans R Soc Lond B 360: 289–295CrossRefGoogle Scholar
  43. Luck GW, Harrington R, Harrison PA, Kreman C, Berry PM, Bugter R, Dawson TP, de Bello F, Diaz S, Feld CK, Haslett JR, Hering D, Kontogianni A, Lavorel S, Rounsevell M, Samways MJ, Sandin L, Settele J, Sykes MT, van den Hove S, Vandewalle M, Zobel M (2009) Quantifying the contribution of organisms to the provision of ecosystem services. Bioscience 59: 223–235CrossRefGoogle Scholar
  44. Magnussen S, Boyle TJB (1995) Estimating sample size for inference about the Shannon-Weaver and the Simpson indices of species diversity. For Ecol Manag 78: 71–84CrossRefGoogle Scholar
  45. Magurran AE (2004) Measuring biological diversity. Blackwell, OxfordGoogle Scholar
  46. Magurran AE, Baillie SR, Buckland ST, Dick JMcP, Elston DA, Scott EM, Smith RI, Somerfield PJ, Watt A (2010) Long-term data sets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol 25: 574–582PubMedCrossRefGoogle Scholar
  47. Maurer BA, McGill BJ (2011) Measurement of species diversity. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 55–65Google Scholar
  48. MEA (2005) Millennium ecosystem assessment: ecosystems and human wellbeing: biodiversity synthesis. Island Press, WashingtonGoogle Scholar
  49. New LF, Buckland ST, Redpath S, Matthiopoulos J Modelling the impact of hen harrier management measures on a red grouse population in the UK. OIKOS (Early View at (in press)
  50. Newson SE, Woodburn RJW, Noble DG, Baillie SR, Gregory RD (2005) Evaluating the Breeding Bird Survey for producing national population size and density estimates. Bird Study 52: 42–54CrossRefGoogle Scholar
  51. Patil GP, Taillie C (1982) Diversity as a concept and its measurement. J Am Stat Assoc 77: 548–561CrossRefGoogle Scholar
  52. Pereira HM, Belnap J, Collen B, Ding H, Gonzalez-Espinosa M, Gregory RD, Honrado J, Jongman RHG, Julliard R, McRae L, Proença V, Rodrigues P, Opige M, Rodriguez JP, Schmeller DS, van Swaay C, Vieira C (2010) Global biodiversity monitoring. Front Ecol Environ 8: 459–460CrossRefGoogle Scholar
  53. Pereira HM, Cooper HD (2006) Towards the global monitoring of biodiversity change. Trends Ecol Evol 21: 123–129PubMedCrossRefGoogle Scholar
  54. Read TRC, Cressie N (1988) Goodness-of-fit statistics for discrete multivariate data. Springer, New YorkCrossRefGoogle Scholar
  55. Rényi A (1961) On measures of information and entropy. In: Proceedings of the 4th Berkeley symposium on mathematics, statistics and probability 1960, pp 547–561Google Scholar
  56. Royle JA, Dorazio RM (2008) Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations, and communities. Academic Press, San DiegoGoogle Scholar
  57. Scholes RJ, Mace GM, Turner W, Geller GN, Jürgens N, Larigauderie A, Muchoney D, Walther BA, Mooney HA (2008) Toward a global biodiversity observing system. Science 321: 1044–1045PubMedCrossRefGoogle Scholar
  58. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27: 379–423Google Scholar
  59. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  60. Simpson EH (1949) Measurement of diversity. Nature 163: 688CrossRefGoogle Scholar
  61. Sims M, Elston DA, Harris MP, Wanless S (2007) Incorporating variance uncertainty into a power analysis of monitoring designs. J Agric Biol Environ Stat 12: 236–249CrossRefGoogle Scholar
  62. Studeny AC (2012) Quantifying biodiversity trends in time and space. PhD thesis, University of St Andrews, St AndrewsGoogle Scholar
  63. Studeny AC, Buckland ST, Illian JB, Johnston A, Magurran AE (2011) Goodness-of-fit measures of evenness: a new tool for exploring changes in community structure. Ecosphere 2:Article 15. doi: 10.1890/ES10-00074.1
  64. Thomas L, Burnham KP, Buckland ST (2004) Temporal inferences from distance sampling surveys. In: Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (eds) Advanced distance sampling. Oxford University Press, Oxford, pp 71–107Google Scholar
  65. Thrush SF, Hewitt JE, Dayton PK, Coco G, Lohrer AM, Norkko A, Norkko J, Chiantore M (2009) Forecasting the limits of resilience: integrating empirical research with theory. Proc R Soc Lond B 276: 3209–3217CrossRefGoogle Scholar
  66. Tong YL (1983) Some distribution properties of the sampling species-diversity indices and their applications. Biometrics 39: 999–1008PubMedCrossRefGoogle Scholar
  67. Tóthmérész B (1995) Comparison of different methods for diversity ordering. J Veg Sci 6: 283–290CrossRefGoogle Scholar
  68. Worm B, Barbier EB, Beaumont N, Diuffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selloe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314: 787–790PubMedCrossRefGoogle Scholar
  69. Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16: 446–453CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • S. T. Buckland
    • 1
  • S. R. Baillie
    • 2
  • J. McP. Dick
    • 3
  • D. A. Elston
    • 4
  • A. E. Magurran
    • 5
  • E. M. Scott
    • 6
  • R. I. Smith
    • 3
  • P. J. Somerfield
    • 7
  • A. C. Studeny
    • 5
  • A. Watt
    • 3
  1. 1.CREEM, University of St Andrews, The ObservatoryFifeUK
  2. 2.British Trust for OrnithologyNorfolkUK
  3. 3.Centre for Ecology and HydrologyPenicuikUK
  4. 4.Biomathematics and StatisticsAberdeenUK
  5. 5.University of St AndrewsSt AndrewsUK
  6. 6.University of GlasgowGlasgowUK
  7. 7.Plymouth Marine LaboratoryPlymouthUK

Personalised recommendations