Environmental and Ecological Statistics

, Volume 19, Issue 4, pp 499–520 | Cite as

Multivariate analyses in soil microbial ecology: a new paradigm

  • Jean ThioulouseEmail author
  • Yves Prin
  • Robin Duponnois


Mycorrhizal symbiosis is a key component of a sustainable soil-plant system, governing the cycles of major plant nutrients and vegetation cover. The mycorrhizosphere includes plants roots, the mycorrhizal fungi, and a complex microbial compartment. A large number of methods have been used to characterize the genetic and functional diversity of these soil microbial communities. We present here a review of the multivariate data analysis methods that have been used in 16 research articles published in the 2005–2009 period. “Descriptive” multivariate data analysis methods have been priviledged over classical “predictive” methods and univariate statistical tests. Data sets, multivariate data analysis methods, graphical outputs and interpretation results are presented and explained in details on several examples coming from some of the 16 articles. These multivariate and graphical methods are available in the ade4 package for the R statistical software. The discussion underlines the importance of using appropriate statistical methods to obtain a good description of soil microbiological and biochemical indicators and a good evaluation of soil quality.


Mycorrhizal symbiosis Soil microbial diversity Descriptive multivariate data analysis BGA Coinertia analysis ade4 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrianjaka Z, Bally R, Lepage M, Thioulouse J, Comte G, Kisa M, Duponnois R (2007) Biological control of Striga hermonthica by Cubitermes termite mound powder amendment in sorghum culture. Appl Soil Ecol 37: 175–183CrossRefGoogle Scholar
  2. Azcon-Aguilar C, Palenzuela J, Roldan A, Bautista S, Vallejo R, Barea JM (2003) Analysis of the mycorrhizal potential in the rhizosphere of representative plant species from desertification-threatened Mediterra- nean shrublands. Appl Soil Ecol 14: 165–175Google Scholar
  3. Barrios E, Delve R, Bejunda M, Mowo J, Agunda J, Ramisch J, Trejo M, Thomas R (2006) Indicators of soil quality: a south-south development of a methodological guide for linking local and technical knowledge. Geoderma 135: 248–259CrossRefGoogle Scholar
  4. Brundrett M (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154: 275–304CrossRefGoogle Scholar
  5. Brussaard L, Behanpelletier VM, Bignell DE, Brown VK, Didden W, Folgarait P, Fragoso C, Freckman DW, Gupta VVSR, Hattori T, Hawksworth DL, Klopatek C, Lavelle P, Malloch DW, Rusek J, Soderstrom B, Tiedje JM, Virginia RA (1997) Biodiversity and ecosystem functioning in soil. Ambio 26: 563–570Google Scholar
  6. Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package-I- One-table methods. R News 4: 5–10Google Scholar
  7. Culhane A, Perriere G, Considine E, Cotter T, Higgins D (2002) Between-group analysis of microarray data. Bioinformatics 18(12): 1600–1608PubMedCrossRefGoogle Scholar
  8. Dabire AP, Hien V, Kisa M, Bilgo A, Sangare KS, Plenchette C, Galiana A, Prin Y, Duponnois R (2000) Responses of soil microbial catabolic diversity to arbuscular mycorrhizal inoculation and soil disinfection. Mycorrhiza 17: 537–545CrossRefGoogle Scholar
  9. Degens BP, Harris JA (1997) Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29(9–10): 1309–1320CrossRefGoogle Scholar
  10. Degens BP, Schipper LA, Sparling GP, Vojvodic-Vukovic M (2000) Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32: 189–196CrossRefGoogle Scholar
  11. Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance?. Soil Biol Biochem 33(9): 1143–1153CrossRefGoogle Scholar
  12. de la Cruz O, Holmes S (2011) The duality diagram in data analysis: examples of modern applications. Ann Appl Stat 5: 2266–2277PubMedCrossRefGoogle Scholar
  13. Diallo MD, Duponnois R, Guisse A, Sall S, Chotte JL, Thioulouse J (2006) Biological effects of native and exotic plant residues on plant growth, microbial biomass and n availability under controlled conditions. Eur J Soil Biol 42(4): 238–246CrossRefGoogle Scholar
  14. Doledec S, Chessel D (1987) Seasonal successions and spatial variables in fresh-water environments. 1. description of a complete 2-way layout by projection of variables. Acta Oecologica-Oecologia Generalis 8(3): 403–426Google Scholar
  15. Doledec S, Chessel D (1994) Co-inertia analysis—an alternative method for studying species environment relationships. Freshw Biol 31(3): 277–294CrossRefGoogle Scholar
  16. Doran J, Parkin T (1994) Defining and assessing soil quality. In: Doran J, Coleman D, Bezdicek D, Stewart B (eds) Defining soil quality for a sustainable environment, vol 35. Soil Science Society of America, Madison, pp 3–21Google Scholar
  17. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4): 1–20Google Scholar
  18. Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84(11): 3078–3089CrossRefGoogle Scholar
  19. Dumanski J, Pieri C (2000) Land quality indicators: research plan. Agric Ecosyst Environ 81: 93–102CrossRefGoogle Scholar
  20. Duponnois R, Plenchette C, Ba AM (2001) Growth stimulation of seventeen fallow leguminous plants inoculated with Glomus aggregatum in Senegal. Eur J Soil Biol 124: 181–186CrossRefGoogle Scholar
  21. Duponnois R, Paugy M, Thioulouse J, Masse D, Lepage M (2005a) Functional diversity of soil microbial community, rock phosphate dissolution and growth of Acacia seyal as influenced by grass-, litter- and soil-feeding termite nest structure amendments. Geoderma 124(3–4): 349–361CrossRefGoogle Scholar
  22. Duponnois R, Colombet A, Hien V, Thioulouse J (2005b) The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea. Soil Biol Biochem 37: 1460–1468CrossRefGoogle Scholar
  23. Duponnois R, Kisa M, Assigbetse K, Prin Y, Thioulouse J, Issartel M, Moulin P, Lepage M (2006a) Fluorescent pseudomonads occuring in Macrotermes subhyalinus mound structures decrease cd toxicity and improve its accumulation in sorghum plants. Sci Total Environ 370(2–3): 391–400PubMedCrossRefGoogle Scholar
  24. Duponnois R, Assigbetse K, Ramanankierana H, Kisa M, Thioulouse J, Lepage M (2006b) Litter-forager termite mounds enhance the ectomycorrhizal symbiosis between Acacia holosericea A. Cunn. Ex G. Don and Scleroderma dictyosporum isolates. FEMS Microbiol Ecol 56: 292–303PubMedCrossRefGoogle Scholar
  25. Duponnois R, Hafidi M, Thioulouse J, Galiana A, Ouahmane L, Dreyfus B, Prin Y (2009) Monitoring the development of nurse plant species to improve the performances of reforestation programs in mediterranean areas. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, BerlinGoogle Scholar
  26. Escoufier Y (1987) The duality diagramm: a means of better practical applications. In: Legendre P, Legendre L (eds) Development in numerical ecology, NATO advanced Institute, Serie G. Springer, Berlin, pp 139–156Google Scholar
  27. Faye A, Krasova-Wade T, Thiao M, Thioulouse J, Neyra M, Prin Y, Galiana A, Ndoye I, Dreyfus B, Duponnois R (2009) Controlled ectomycorrhization of an exotic legume tree species Acacia holosericea affects the structure of root nodule bacteria community and their symbiotic effectiveness on Faidherbia albida, a native sahelian acacia. Soil Biol Biochem 41(6): 1245–1252CrossRefGoogle Scholar
  28. Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Roux CL, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165(1): 317–328PubMedCrossRefGoogle Scholar
  29. Giller KE, Beare MH, Lavelle P, Izac A-MN, Swift MJ (1997) Agricultural intensification, soil biodiversity and agrosystme function. Appl Soil Ecol 6: 3–16CrossRefGoogle Scholar
  30. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IA (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69–72CrossRefGoogle Scholar
  31. Hill MO, Smith AJE (1976) Principal component analysis of taxonomic data with multi-state discrete characters. Taxon 25: 249–255CrossRefGoogle Scholar
  32. Holmes S (2006) Multivariate analysis: the French way. In: Nolan D, Speed T (eds) Festschrift for David Freedman. IMS, Beachwood, pp 1–14Google Scholar
  33. Huberty CJ (1994) Applied discriminant analysis. Wiley, New YorkGoogle Scholar
  34. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48(1): 1–13PubMedCrossRefGoogle Scholar
  35. Kiers HAL (1991) Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables. Psychometrika 56(2): 197–212CrossRefGoogle Scholar
  36. Kisa M, Sanon A, Thioulouse J, Assigbetse K, Sylla S, Spichiger R, Dieng L, Berthelin J, Prin Y, Galiana A, Lepage M, Duponnois R (2007) Arbuscular mycorrhizal symbiosis can counterbalance the negative influence of the exotic tree species Eucalyptus camaldulensis on the structure and functioning of soil microbial communities in a sahelian soil. FEMS Microbiol Ecol 62(1): 32–44PubMedCrossRefGoogle Scholar
  37. Lavorel S (1999) Ecological diversity and resilience of Mediterranean vegetation to disturbance. Divers Distrib 5: 3–13CrossRefGoogle Scholar
  38. LeRoux B, Rouanet H (2004) Geometric data analysis. Kluwer, DordrechtGoogle Scholar
  39. Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora—the mycorrhizosphere effect. Phytopathology 78(3): 366–371Google Scholar
  40. Nakatsu CH, Torsvik V, Ovreas L (2000) Soil community analysis using dgge of 16s rdna polymerase chain reaction products. Soil Sci Soc Am J 64(4): 1382–1388CrossRefGoogle Scholar
  41. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) vegan: community ecology package. URL, r package version 1.17-4
  42. Orwin KH, Wardle DA (2004) New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol Biochem 36(11): 1907–1912CrossRefGoogle Scholar
  43. Ouahmane L, Hafidi M, Plenchette C, Kisa M, Bournezzough A, Thioulouse J, Duponnois R (2006a) Lavandula species as accompanying plants in Cupressus replanting strategies: Effect on plant growth, mycorrhizal soil infectivity and soil microbial catabolic diversity. Appl Soil Ecol 34(2–3): 190–199CrossRefGoogle Scholar
  44. Ouahmane L, Duponnois R, Hafidi M, Kisa M, Boumezouch A, Thioulouse J, Plenchette C (2006b) Some Mediterranean plant species (Lavandula spp. and Thymus satureioides) act as potential “plant nurses” for the early growth of Cupressus atlantica. Plant Eco 185:123–134Google Scholar
  45. Ouahmane L, Thioulouse J, Hafidi M, Prin Y, Ducousso M, Galiana A, Plenchette C, Kisa M, Duponnois R (2007) Soil functional diversity and P solubilization from rock phosphate after inoculation with native or allochtonous arbuscular mycorrhizal fungi. For Ecol Manag 241(1–3): 200–208CrossRefGoogle Scholar
  46. Ouahmane L, Revel JC, Hafidi M, Thioulouse J, Prin Y, Galiana A, Dreyfus B, Duponnois R (2009) Responses of Pinus halepensis growth, soil microbial catabolic functions and phosphate-solubilizing bacteria after rock phosphate amendment and ectomycorrhizal inoculation. Plant Soil 320(1–2): 169–179CrossRefGoogle Scholar
  47. Pimm SL (1984) The complexity and stability of ecosystems. Nature 307(5949): 321–326CrossRefGoogle Scholar
  48. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL, ISBN 3-900051-07-0
  49. Ramanankierana N, Rakotoarimanga N, Thioulouse J, Kisa M, Randrianjohany E, Ramaroson L, Duponnois R (2006) The ectomycorrhizosphere effect influences functional diversity of soil microflora. Int J Soil Sci 1: 8–19CrossRefGoogle Scholar
  50. Ramanankierana N, Ducousso M, Rakotoarimanga N, Prin Y, Thioulouse J, Randrianjohany E, Ramaroson L, Kisa M, Galiana A, Duponnois R (2007) Arbuscular mycorrhizas and ectomycorrhizas of Uapaca bojeri l. (euphorbiaceae): sporophore diversity, patterns of root colonization, and effects on seedling growth and soil microbial catabolic diversity. Mycorrhiza 17(3): 195–208PubMedCrossRefGoogle Scholar
  51. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62: 142–160PubMedCrossRefGoogle Scholar
  52. Remigi P, Faye A, Kane A, Deruaz M, Thioulouse J, Cissoko M, Prin Y, Galiana A, Dreyfus B, Duponnois R (2008) The exotic legume tree species Acacia holosericea alters microbial soil functionalities and the structure of the arbuscular mycorrhizal community. Appl Environ Microbiol 74(5): 1485–1493PubMedCrossRefGoogle Scholar
  53. Schreiner RP, Mihara KL, McDaniel H, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188(2): 199–209CrossRefGoogle Scholar
  54. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  55. ter Braak CJF, Juggins S (1993) Weighted averaging partial least squares regression (wa-pls): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502CrossRefGoogle Scholar
  56. Thioulouse J (2011) Simultaneous analysis of a sequence of paired ecological tables: a comparison of several methods. Ann Appl Stat 5: 2300–2325CrossRefGoogle Scholar
  57. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, BerlinCrossRefGoogle Scholar
  58. Wirsel SGR (2004) Homogenous stands of wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48: 129–138PubMedCrossRefGoogle Scholar
  59. Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29(2): 111–129CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Université de Lyon, 69000 Lyon; Université Lyon 1; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie EvolutiveVilleurbanne CedexFrance
  2. 2.Laboratoire des Symbioses Tropicales et MéditerranéennesUMR 113 CIRAD, IRD, Université Montpellier 2, SupAgro, USC INRAMontpellier Cedex 5France

Personalised recommendations