On the Estimation of Dispersal Kernels from Individual Mark-Recapture Data

  • Masami FujiwaraEmail author
  • Kurt E. Anderson
  • Michael G. Neubert
  • Hal Caswell


We present a new method for estimating a distribution of dispersal displacements (a dispersal kernel) from mark-recapture data. One conventional method of calculating the dispersal kernel assumes that the distribution of displacements are Gaussian (e.g. resulting from a diffusion process) and that individuals remain within sampled areas. The first assumption prohibits an analysis of dispersal data that do not exhibit the Gaussian distribution (a common situation); the second assumption leads to underestimation of dispersal distance because individuals that disperse outside of sampling areas are never recaptured. Our method eliminates these two assumptions. In addition, the method can also accommodate mortality during a sampling period. This new method uses integrodifference equations to express the probability of spatial mark-recapture data; associated dispersal, survival, and recapture parameters are then estimated using a maximum likelihood method. We examined the accuracy of the estimators by applying the method to simulated data sets. Our method suggests designs for future mark-recapture experiments.


Capture-recapture study Dispersal kernel Individual mark-recapture Integrodifference equation models Spatial model Survival 


  1. Anderson, KE 2004The spatial population dynamic consequences of dispersal behaviour: Case studies in aquatic and terrestrial systemsUniversity of CaliforniaSanta BarbaraPhD ThesisGoogle Scholar
  2. Brownie, C, Hines, JE, Nichols, JD, Pollock, KH, Hestbeck, JB 1993Capture-recapture studies for multiple strata including non-Markovian transitionsBiometrics4911731187Google Scholar
  3. Burnham, KP, Anderson, D 2002Model selection and multi-model inferenceSpringer-VerlagNew YorkGoogle Scholar
  4. Catchpole, E, Morgan, B 1997Detecting parameter redundancyBiometrika84187196CrossRefGoogle Scholar
  5. Clark, JS 1998Why trees migrate so fast: confronting theory with dispersal biology and the paleorecordAm Nat152204224CrossRefPubMedGoogle Scholar
  6. Clark, JS, Lewis, M, Horvath, L 2001Invasion by extremes: population spread with variation in dispersal and reproductionAm Nat157537554CrossRefPubMedGoogle Scholar
  7. Easterling, MR, Ellner, SP, Dixon, PM 2000Size-specific sensitivity: applying a new structured population modelEcology81694708CrossRefGoogle Scholar
  8. Evans, M, Hastings, N, Peacock, B 1993statistical distributionsWiley Inc.New YorkGoogle Scholar
  9. Fujiwara M (2002). Mark-recapture statistics and demographic analysis. Ph.D. Thesis. MIT/WHOI, 2002–08Google Scholar
  10. Fujiwara, M, Caswell, H 2002A general approach to temporary emigration in mark-recapture analysisEcology8332663275Google Scholar
  11. Gerking, SD 1959The restricted movement of fish populationsBiol Rev34221242Google Scholar
  12. Gowan, C, Young, MK, Fausch, KD, Riley, SC 1994Restricted movement in resident stream salmonids: a paradigm lost?Can J Fish Aquat Sci5126262637CrossRefGoogle Scholar
  13. Hestbeck, JB, Nichols, JD, Malecki, RA 1991Estimates of movement and site fidelity using mark-resight data of wintering Canada geeseEcology72523533CrossRefGoogle Scholar
  14. Jenkins, TM,Jr, Diehl, S, Kratz, KW, Cooper, SD 1999Effects of population density on individual growth of brown trout in streamsEcology80941956CrossRefGoogle Scholar
  15. Kendall, WL, Nichols, JD, Hines, JE 1997Estimating temporary emigration using capture-recapture data with Pollock’s robust designEcology78563578CrossRefGoogle Scholar
  16. Kendall, WL, Nichols, JD 1995On the use of secondary capture-recapture samples to estimate temporary emigration and breeding proportionsJ Appl Stat22751762CrossRefGoogle Scholar
  17. Kendall, WL, Pollock, KH, Brownie, C 1995A likelihood-based approach to capture-recapture estimation of demographic parameters under the robust designBiometrics51293308PubMedGoogle Scholar
  18. Kot, M 1989Diffusion-driven period-doubling bifurcationsBiosystems22279287PubMedCrossRefGoogle Scholar
  19. Kot, M, Lewis, MA, Driessche, P 1996Dispersal data and the spread of invading organismsEcology7720272042CrossRefGoogle Scholar
  20. Kot, M, Schaffer, WM 1986Discrete-time growth-dispersal modelsMath Biosci80109136CrossRefGoogle Scholar
  21. Lebreton, J-D, Burnham, KP, Clobert, J, Anderson, DR 1992Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studiesEcol Monogr6267118CrossRefGoogle Scholar
  22. Math Works Inc. (1999). MATLAB, Release 11. Natic, MAGoogle Scholar
  23. Moran, PAP 1951A mathematical theory of animal trappingBiometrika38307311CrossRefGoogle Scholar
  24. Neubert, MG, Kot, M, Lewis, MA 1995Dispersal and pattern formation in a discrete-time predator-prey modelTheor Popul Biol481995CrossRefGoogle Scholar
  25. Neubert, MG, Caswell, H 2000Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populationsEcology8116131628CrossRefGoogle Scholar
  26. Neubert, MG, Kot, M, Lewis, MA 2000Invasion speeds in fluctuating environmentsProc R Soc Lond Ser B: Biol Sci26716031610CrossRefGoogle Scholar
  27. Okubo, A 1980Diffusion and ecological problems: mathematical modelsSpringer-VerlagNew YorkGoogle Scholar
  28. Pollock, KH 1982A capture-recapture design robust to unequal probability of captureJ Wildl Manage46752757Google Scholar
  29. Rice, JA 1995Mathematical statistics and data analysis2Duxbury PressBelmont, CAGoogle Scholar
  30. Rodriguez, MA 2002Restricted movement in stream fish: the paradigm is incomplete, not lostEcology83113Google Scholar
  31. Shigesada, N, Kawasaki, K 1997Biological invasions: theory and practiceOxford University PressOxfordGoogle Scholar
  32. Skalski, GT, Gilliam, JF 2000Modeling diffusive spread in a heterogenous population: a movement study with stream fishEcology8116851700CrossRefGoogle Scholar
  33. Turchin, P 1998Quantitative analysis of movement: measuring and modeling population redistribution in animals and plantsSinauerSunderland, MAGoogle Scholar
  34. Kirk, RW, Lewis, MA 1996Dispersal data and the spread of invading organismsBull Math Biol59107137Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Masami Fujiwara
    • 1
    Email author
  • Kurt E. Anderson
    • 1
  • Michael G. Neubert
    • 2
  • Hal Caswell
    • 2
  1. 1.Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Biology DepartmentMS #34 Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations