Environmental and Ecological Statistics

, Volume 13, Issue 2, pp 237–245 | Cite as

Obtaining Environmental Favourability Functions from Logistic Regression

  • Raimundo Real
  • A. Márcia Barbosa
  • J. Mario Vargas


Logistic regression is a statistical tool widely used for predicting species’ potential distributions starting from presence/absence data and a set of independent variables. However, logistic regression equations compute probability values based not only on the values of the predictor variables but also on the relative proportion of presences and absences in the dataset, which does not adequately describe the environmental favourability for or against species presence. A few strategies have been used to circumvent this, but they usually imply an alteration of the original data or the discarding of potentially valuable information. We propose a way to obtain from logistic regression an environmental favourability function whose results are not affected by an uneven proportion of presences and absences. We tested the method on the distribution of virtual species in an imaginary territory. The favourability models yielded similar values regardless of the variation in the presence/absence ratio. We also illustrate with the example of the Pyrenean desman’s (Galemys pyrenaicus) distribution in Spain. The favourability model yielded more realistic potential distribution maps than the logistic regression model. Favourability values can be regarded as the degree of membership of the fuzzy set of sites whose environmental conditions are favourable to the species, which enables applying the rules of fuzzy logic to distribution modelling. They also allow for direct comparisons between models for species with different presence/absence ratios in the study area. This makes them more useful to estimate the conservation value of areas, to design ecological corridors, or to select appropriate areas for species reintroductions.


Biogeographic inferences Distribution modelling Fuzzy logic Galemys pyrenaicus Model comparison Presence/absence ratio Virtual species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbosa, AM, Real, R, Olivero, J, Vargas, JM 2003Otter (Lutra lutra) distribution modeling at two resolution scales suited to conservation planning in the Iberian PeninsulaBiol Conserv114377387CrossRefGoogle Scholar
  2. Brito, JC, Crespo, EG, Paulo, OS 1999Modelling wildlife distributions: logistic multiple regression vs overlap analysisEcography22251260Google Scholar
  3. Bustamante, J 1997Predictive models for lesser kestrel Falco naumanni distribution, abundance and extinction in southern SpainBiol Conserv80153160CrossRefGoogle Scholar
  4. Franco, AMA, Brito, JC, Almeida, J 2000Modelling habitat selection of common cranes Grus grus wintering in Portugal using multiple logistic regressionIbis142351358Google Scholar
  5. Hosmer, DW, Lemeshow, S 1989Applied logistic regressionJohn Wiley and Sons, IncNew Yorkp 19 and 147Google Scholar
  6. Madsen, AB, Prang, A 2001Habitat factors and the presence or absence of otters Lutra lutra in DenmarkActa Theriologica46171179Google Scholar
  7. Palomo LJ, Gisbert J (2002). Atlas de los mamíferos terrestres de España. Dirección General de Conservación de la Naturaleza-SECEM-SECEMU, Madrid.Google Scholar
  8. Rojas, AB, Cotilla, I, Real, R, Palomo, LJ 2001Determinación de las áreas probables de distribución de los mamíferos terrestres en la provincia de Málaga a partir de las presencias conocidasGalemys13217229Google Scholar
  9. Romero, J, Real, R 1996Macroenvironmental factors as ultimate determinants of the distribution of common toad and natterjack toad in the south of SpainEcography19305312Google Scholar
  10. Seoane, J, Bustamante, J 2001Modelos predictivos de la distribución de especies: una revisión de sus limitacionesEcología15921Google Scholar
  11. Tabachnick, BG, Fidell, LS 1996Using multivariate analysis3HarperCollins College PublishersNorthridge CaliforniaGoogle Scholar
  12. Teixeira, J, Ferrand, N, Arntzen, JW 2001Biogeography of the golden-striped salamander, Chioglossa lusitanica: a field survey and spatial modelling approachEcography24618623CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Raimundo Real
    • 1
  • A. Márcia Barbosa
    • 1
  • J. Mario Vargas
    • 1
  1. 1.Laboratorio de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations