Educational Studies in Mathematics

, Volume 102, Issue 3, pp 361–378 | Cite as

Combining material- and community-based implementation strategies for scaling up: the case of supporting low-achieving middle school students

  • Susanne PredigerEmail author
  • Claudia Fischer
  • Christoph Selter
  • Christian Schöber


In order to better facilitate scaling up of classroom innovations, two complementary strategies have often been discussed. The community-based strategy emphasizes the necessity for professional learning communities and their embedding in institutional settings. The material-based strategy starts from well-designed teaching materials, which are considered catalysts for bringing teaching approaches to many classrooms. The implementation project reported on in this study systematically combines both strategies and takes a third strategy into account: the systemic strategy of addressing higher levels of the school system, such as the school and district levels. The goal of the project is to help teachers to better support low-achieving students at the beginning of German secondary schools (grades 5 and 6). The results of the accompanying research in a quasi-experimental study, reported in this article, show that a combination of strategies can be effective: the participating low-achieving students had higher learning gains than a control group did. The deeper analysis provides insights into the complexities of the interplay of community aspects, institutional backgrounds, and the power of substantial teaching materials.


Implementation Material for scaling up Professional learning communities Low-achieving students 



We thank the project team in Dortmund (Sabrina Lübke, Stephan Hußmann, Corinna Mosandl, Marcus Nührenbörger, Birte Pöhler, Gerd Seifert, and Lara Sprenger), the evaluation team in Kiel (Franziska Trepke, Brigitte Döring, and Olaf Köller), and all the involved facilitators, schools, and teachers.

Funding information

The research was funded by the German Telekom Foundation and is conducted within the DZLM research program (Deutsches Zentrum für Lehrerbildung Mathematik: German Center for Mathematics Teacher Education).


  1. Adler, J., & Jaworski, B. (2009). Public writing in the field of mathematics teacher education. In R. Even & D. Ball (Eds.), The professional education and development of teachers of mathematics (pp. 249–254). New York: Springer.CrossRefGoogle Scholar
  2. Andersson, U. (2010). Skill development in different components of arithmetic and basic cognitive functions. Journal of Educational Psychology, 102(1), 115–134.CrossRefGoogle Scholar
  3. Bell, A. (1993). Some experiments in diagnostic teaching. Educational Studies in Mathematics, 24(1), 115–137.CrossRefGoogle Scholar
  4. Boaler, J. (2002). Experiencing school mathematics. Mahwah: Lawrence Erlbaum.CrossRefGoogle Scholar
  5. Bonsen, M., & Rolff, H.-G. (2006). Professionelle Lerngemeinschaften von Lehrerinnen und Lehrern [Professional learning communities of teachers]. Zeitschrift für Pädagogik, 52(2), 167–185.Google Scholar
  6. Bryk, A. S., Sebring, P. B., Allensworth, E., Luppescu, S., & Easton, J. Q. (2010). Organizing schools for improvement. Chicago: University of Chicago Press.Google Scholar
  7. Burkhardt, H. (2006). From design research to large scale impact. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 121–150). London: Routledge.Google Scholar
  8. Burkhardt, H., & Schoenfeld, A. (2003). Improving educational research. Educational Researcher, 32(9), 3–14.CrossRefGoogle Scholar
  9. Cheung, A. C., & Slavin, R. E. (2016). How methodological features affect effect sizes in education. Educational Researcher, 45(5), 283–292.CrossRefGoogle Scholar
  10. Cobb, P., & Jackson, K. (2012). Analyzing educational policies: A learning design perspective. The Journal of the Learning Sciences, 21, 487–521.CrossRefGoogle Scholar
  11. Coburn, C. E. (2003). Rethinking scale: Moving beyond numbers to deep and lasting change. Educational Researcher, 32(6), 3–12.CrossRefGoogle Scholar
  12. Darling-Hammond, L. (1997). Restructuring schools for student success. In A. H. Halsey, H. Lauder, P. Brown, & A. Stuart Wells (Eds.), Education—Culture—Economy, and Society (pp. 332–353). Oxford: Oxford University Press.Google Scholar
  13. Darling-Hammond, L., & Richardson, N. (2009). Teacher learning: What matters? Educational Leadership, 66(5), 46–53.Google Scholar
  14. Euler, D., & Sloane, P. (1998). Implementation als Problem der Modellversuchsforschung [Implementation as a problem of field research]. Unterrichtswissenschaft, 26(4), 312–326.Google Scholar
  15. Fischer, C., & Rieck, K. (2014). Improving teaching in science and mathematics. In R. E. Slavin (Ed.), Classroom management and assessment. Proven programs in education (pp. 110–115). Corwin: Thousand Oaks.CrossRefGoogle Scholar
  16. Fischer, C., Rieck, K., Döring, B., & Köller, O. (2017). Externe Evaluation von „Mathe sicher können“. Ergebnisse der Gesamtbefragung der Lehrkräfte [External evaluation of “Mastering Math”. Results of the teacher survey]. Kiel: IPN.
  17. Fischer, C., Schöber, C., Döring, B., & Köller, O. (2017). Externe Evaluation von “Mathe sicher können”. Ergebnisse der Testung der Lernenden [External evaluation of “Mastering Math”. Results of the student assessment]. Kiel: IPN.
  18. Gräsel, C., Fußangel, K., & Pröbstel, C. (2006). Die Anregung von Lehrkräften zur Kooperation—eine Aufgabe für Sisyphos? [Initiating teachers’ cooperation. A task for Sisyphos?]. Zeitschrift für Pädagogik, 52(2), 205–219.Google Scholar
  19. Gravemeijer, K., Bruin-Muurling, G., Kraemer, J.-M., & van Stiphout, I. (2016). Shortcomings of mathematics education reform in the Netherlands: A paradigm case? Mathematical Thinking and Learning, 18(1), 25–44.CrossRefGoogle Scholar
  20. Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371–404). Charlotte: Information Age.Google Scholar
  21. Hußmann, S., Nührenbörger, M., Prediger, C., Selter, C., & Drücke-Noe, C. (2014). Schwierigkeiten in Mathematik begegnen [Overcoming difficulties in mathematics]. Praxis der Mathematik, 56(56), 2–8.Google Scholar
  22. Krainer, K. (2008). Individuals, teams, communities and networks: Participants and ways of participation in mathematics teacher education. In K. Krainer & T. Wood (Eds.), International handbook of mathematics teacher education (Vol. 3, pp. 1–10). Rotterdam: Sense.Google Scholar
  23. Kullmann, H. (2012). Lesson Study—eine konsequente Form unterrichtsbezogener Lehrerkooperation. In S. G. Huber & F. Ahlgrimm (Eds.), Kooperation. Aktuelle Forschung zur Kooperation in und zwischen Schulen sowie mit anderen Partnern (pp. 69–88). Waxmann: Münster.Google Scholar
  24. Lachance, A., & Confrey, J. (2003). Interconnecting content and community: A qualitative study of secondary mathematics teachers. Journal of Mathematics Teacher Education, 6(2), 107–137.CrossRefGoogle Scholar
  25. Llinares, S., & Krainer, K. (2006). Professional aspects of teaching mathematics. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of Mathematics Education (pp. 429–459). Rotterdam: Sense.Google Scholar
  26. Lomos, C., Hofman, R. H., & Bosker, R. J. (2011). Professional communities and student achievement—A meta-analysis. School Effectiveness and School Improvement, 22(2), 121–148.CrossRefGoogle Scholar
  27. Maaß, K., & Artigue, M. (2013). Implementation of inquiry-based learning in day-to-day teaching: A synthesis. ZDM, 45(6), 779–795.CrossRefGoogle Scholar
  28. Maccini, P., Mulcahy, C. A., & Wilson, M. G. (2007). A follow-up of mathematics interventions for secondary students with learning disabilities. Learning Disabilities Research & Practice, 22(1), 58–74.CrossRefGoogle Scholar
  29. McDuffie, A. M., & Mather, M. (2006). Reification of instructional materials as part of the process of developing problem-based practices in mathematics education. Teachers and Teaching: Theory and Practice, 12, 435–459.CrossRefGoogle Scholar
  30. Moser Opitz, E. (2007). Rechenschwäche/Dyskalkulie [Mathematical learning difficulties/Discalculia]. Bern: Haupt.Google Scholar
  31. Moser Opitz, E., Freesemann, O., Grob, U., & Prediger, S. (2016). BASIS-MATH-G 4+-5. Gruppentest zur Basisdiagnostik Mathematik [Group test for basic assessment mathematics]. Bern: Hogrefe.Google Scholar
  32. Moser Opitz, E., Freesemann, O., Prediger, S., Grob, U., Matull, I., & Hußmann, S. (2017). Remediation for students with mathematics difficulties. Journal of Learning Disabilities, 50(6), 724–736.CrossRefGoogle Scholar
  33. Nührenbörger, M., & Schwarzkopf, R. (2010). Die Entwicklung mathematischen Wissens in sozial-interaktiven Kontexten [the development of mathematical knowledge in social-interactive contexts]. In C. Böttinger, K. Bräuning, M. Nührenbörger, R. Schwarzkopf, & E. Söbbeke (Eds.), Mathematik im Denken der Kinder (pp. 73–81). Seelze: Klett-Kallmeyer.Google Scholar
  34. Prediger, S., Freesemann, O., Moser Opitz, E., & Hußmann, S. (2013). Unverzichtbare Verstehensgrundlagen statt kurzfristige Reparatur [Indispensable basic needs rather than short-term repair]. Praxis der Mathematik, 55(51), 12–17.Google Scholar
  35. Prenzel, M., Friedrich, A., & Stadler, M. (2008). Von Sinus lernen. Wie Unterrichtsentwicklung gelingt [Learning from the model project Sinus. How classroom development can succeed]. Seelze: Kallmeyer.Google Scholar
  36. Prenzel, M., Sälzer, C., Klieme, E., & Köller, O. (Eds.). (2013). PISA 2012. Münster: Waxmann.Google Scholar
  37. Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of mathematics curricula. Review of Educational Research, 75(2), 211–246.CrossRefGoogle Scholar
  38. Roesken-Winter, B., Hoyles, C., & Bloemeke, S. (2015). Evidence-based CPD: Scaling up sustainable interventions. ZDM Mathematics Education, 47(1), 1–12.CrossRefGoogle Scholar
  39. Rogers, E. M. (2003). Diffusion of innovations. New York: The Free Press.Google Scholar
  40. Schellenbach–Zell, J., Rürup, M., Fussangel, K., & Gräsel, C. (2008). Bedingungen erfolgreichen Transfers am Beispiel von Chemie im Kontext [Conditions of successful transfer for the example of Chemistry in Context]. In R. Demuth, C. Gräsel, B. Ralle, & I. Parchmann (Eds.), Chemie im Kontext (pp. 81–121). Münster: Waxmann.Google Scholar
  41. Selter, C., & Bonsen, M. (2018). Konzeptionelles und Beispiele aus dem Projekt PIKAS [Ideas and examples from the project PIKAS]. In R. Biehler, T. Lange, T. Leuders, B. Roesken-Winter, P. Scherer, & C. Selter (Eds.), Mathematikfortbildungen professionalisieren (pp. 143–164). Heidelberg: Springer.CrossRefGoogle Scholar
  42. Selter, C., Prediger, S., Nührenbörger, M., & Hußmann, S. (Eds.). (2014). Mathe sicher können—Natürliche Zahlen. Diagnose- und Förderkonzept [Mastering Math—Natural numbers. Material for formative assessment and intervention]. Berlin: Cornelsen.Google Scholar
  43. Selter, C., Wessel, J., Walther, G., & Wendt, H. (2012). Mathematische Kompetenzen im internationalen Vergleich. Testkonzeption und Ergebnisse. In W. Bos, H. Wendt, O. Köller, & C. Selter (Eds.), Mathematische und naturwissenschaftliche Kompetenz von Grundschulkindern (pp. 69–122). Münster: Waxmann.Google Scholar
  44. Sundermann, B., & Selter, C. (2013). Beurteilen und Fördern im Mathematikunterricht [Assessing and fostering in mathematics classrooms]. Berlin: Cornelsen.Google Scholar
  45. Swan, M. (2007). The impact of task-based professional development on teachers' practices and beliefs. Journal of Mathematics Teacher Education, 10(4–6), 217–237.CrossRefGoogle Scholar
  46. Takahashi, A., & Yoshida, M. (2004). Lesson-study communities. Teaching Children Mathematics, 10(9), 436–437.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute for Development and Research in Mathematics Education (IEEM)TU Dortmund UniversityDortmundGermany
  2. 2.Leibniz-Institute for Science and Mathematics Education (IPN)KielGermany

Personalised recommendations