Educational Studies in Mathematics

, Volume 86, Issue 1, pp 97–124 | Cite as

A cognitive analysis of Cauchy’s conceptions of function, continuity, limit and infinitesimal, with implications for teaching the calculus

Article

Abstract

In this paper, we use theoretical frameworks from mathematics education and cognitive psychology to analyse Cauchy’s ideas of function, continuity, limit and infinitesimal expressed in his Cours D’Analyse. Our analysis focuses on the development of mathematical thinking from human perception and action into more sophisticated forms of reasoning and proof, offering different insights from those afforded by historical or mathematical analyses. It highlights the conceptual power of Cauchy’s vision and the fundamental change involved in passing from the dynamic variability of the calculus to the modern set-theoretic formulation of mathematical analysis. This offers a re-evaluation of the relationship between the natural geometry and algebra of elementary calculus that continues to be used in applied mathematics, and the formal set theory of mathematical analysis that develops in pure mathematics and evolves into the logical development of non-standard analysis using infinitesimal concepts. It suggests that educational theories developed to evaluate student learning are themselves based on the conceptions of the experts who formulate them. It encourages us to reflect on the principles that we use to analyse the developing mathematical thinking of students, and to make an effort to understand the rationale of differing theoretical viewpoints.

Keywords

Cauchy Continuity Continuum Infinitesimal Limit Procept Proceptual symbolism 

References

  1. Alcock, L., & Simpson, A. P. (2005). Reported the successful learning of students in an analysis course who operate “almost exclusively by means of verbal and algebraic reasoning, and tend not to incorporate visual images into their work” p. 77.Google Scholar
  2. Asiala, M., Brown, A., DeVries, D., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. Research in Collegiate Mathematics Education II, 1–32.Google Scholar
  3. Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., … Shnider, S. (2013). Is mathematical history written by the victors? Notices of the American Mathematical Society 60(7), 886–904.Google Scholar
  4. Błaszczyk, P., Katz, M., & Sherry, D. (2013). Ten misconceptions from the history of analysis and their debunking. Foundations of Science, 18(1), 43–74. doi:10.1007/s10699-012-9285-8. http://arxiv.org/abs/1202.4153.
  5. Borel, E. (1902). Leçons sur les séries à termes positifs, [Lessons on series with positive terms] ed. Robert d’Adhemar, Paris, Gauthier-Villars.Google Scholar
  6. Borovik, A., & Katz, M. (2012). Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, 17(3), 245–276. doi:10.1007/s10699-011-9235-x. http://arxiv.org/abs/1108.2885.
  7. Bråting, K. (2007). A new look at E. G. Björling and the Cauchy sum theorem. Archive for History of Exact Sciences, 61(5), 51–535.CrossRefGoogle Scholar
  8. Breus, K. A. (1968). Jean Le Rond d’Alembert on the 250th anniversary of his birth. Ukrainskii Matematicheskii Zhurnal, 20(2), 228–231.Google Scholar
  9. Cantor, G. (1872). Uber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen, [On the generalization of a theorem from the theory of trigonometric series] Mathematische Annalen, 5, 123–132.Google Scholar
  10. Cauchy, A. L. (1821). Cours d’Analyse de l’Ecole Royale Polytechnique. [A course in analysis for the royal polytechnic school]. Paris: Imprimérie Royale. See http://gallica.bnf.fr/ark:/12148/bpt6k90195m/f12
  11. Cauchy, A. L. (1823). Résumé des Leçons données à l’Ecole royale polytechnique sur le calcul infinitésimal. [Summary of the lessons given to the royal polytechnic school on the infinitesimal calculus]. Paris: Imprimérie Royale.Google Scholar
  12. Cauchy, A. L. (1827). Sur les fonctions réciproques. [On inverse functions]. Oeuvres 2 (7), 177–194. Available online at http://mathdoc.emath.fr/cgi-bin/oetoc?id=OE_CAUCHY_2_7 Google Scholar
  13. Cauchy, A. L. (1853). Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. [Note on convergent series whose terms are continuous functions of a real or imaginary variable, between given limits]. In Oeuvres complètes, Series 1, Vol. 12, pp. 30–36. Paris: Gauthier–Villars, 1900.Google Scholar
  14. Child, J. M. (editor and translator) (1920). The early mathematical manuscripts of Leibnitz. Chicago: Open Court.Google Scholar
  15. Cornu, B. (1981). Apprentissage de la notion de limite: modèles spontanés et modèles propres. [Teaching the notion of limit: spontaneous and proper models.] Actes due Cinquième Colloque du Groupe International P.M.E., Grenoble, 322–326.Google Scholar
  16. Cornu, B. (1991). Limits. In D. O. Tall (Ed.), Advanced mathematical thinking (pp. 153–166). Dordrecht: Kluwer.Google Scholar
  17. Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process scheme. Journal of Mathematical Behavior, 15(2), 167–192.CrossRefGoogle Scholar
  18. Descartes, R. (1635). Discours de la Methode, trans. D. E. Smith & M. L. Latham, as The Geometry of René Descartes (1954). New York: Dover Publications.Google Scholar
  19. Donald, M. (2001). A mind so rare: The evolution of human consciousness. New York: W. W. Norton & Company.Google Scholar
  20. Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. O. Tall (Ed.), Advanced mathematical thinking (pp. 95–126). Dordrecht: Kluwer.Google Scholar
  21. Ehrlich, P. (2006). The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences, 60, 1–121.Google Scholar
  22. Ely, R. (2010). Nonstandard student conceptions about infinitesimals. Journal for Research in Mathematics Education, 41(2), 117–146.Google Scholar
  23. Euler, L. (1748). Introductio in analysin infinitorum [Introduction to the Analysis of the Infinite]. Lausanne: Bousquet. Reprinted as Opera mathematica, Series I, Volume VIII.Google Scholar
  24. Euler, L. (1749). Sur la controverse entre Mrs. Leibniz et Bernoulli sur les logarithmes des nombres negatifs et imaginaires [On the controversy between Messrs Leibniz and Bernoulli concerning the logarithms of negative and imaginary numbers], Opera Omnia 1, 185–232.Google Scholar
  25. Ferraro, G. (2004). Differentials and differential coefficients in the Eulerian foundations of the calculus. Historia Mathematica, 31, 34–61.CrossRefGoogle Scholar
  26. Freudenthal, H. (1971). Did Cauchy plagiarise Bolzano? Archive for History of Exact Sciences, 7, 375–392.CrossRefGoogle Scholar
  27. Grabiner, J. V. (1983). Who gave you the epsilon? Cauchy and the origins of rigorous calculus. American Mathematical Monthly, 90(3), 185–194.CrossRefGoogle Scholar
  28. Grattan–Guinness, I. (2004). The mathematics of the past: Distinguishing its history from our heritage. Historia Mathematica, 31, 163–185.CrossRefGoogle Scholar
  29. Gray, J. (2008). Plato’s ghost. The modernist transformation of mathematics. Princeton, NJ: Princeton University Press.Google Scholar
  30. Gray, E. M., & Tall, D. O. (1994). Duality, ambiguity and flexibility: A proceptual view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 115–141.CrossRefGoogle Scholar
  31. Hawking, S. (Ed.). (2007). The mathematical breakthroughs that changed history. Philadelphia, PA: Running Press. 2007.Google Scholar
  32. Hilbert, D. (1900). Mathematische Probleme, Göttinger Nachrichten, 253–297.Google Scholar
  33. Hughes-Hallett, et al. (2009). Applied calculus (4th ed.). Hoboken NJ: Wiley.Google Scholar
  34. Joyce, D. E. (1997). Euclid’s Elements. Retrieved from http://aleph0.clarku.edu/~djoyce/java/elements/toc.html.
  35. Katz, K., & Katz, M. (2010a). When is 0.999… less than 1? The Montana Mathematics Enthusiast, 7(1), 3–30.Google Scholar
  36. Katz, K., & Katz, M. (2010b). Zooming in on infinitesimal 1–0.9… in a post-triumvirate era. Educational Studies in Mathematics, 74(3), 259–273.Google Scholar
  37. Katz, K., & Katz, M. (2011). Cauchy’s continuum. Perspectives on Science, 19(4), 426–452. doi:10.1162/POSC_a_00047.
  38. Katz, K., & Katz, M. (2012). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science, 17(1), 51–89. doi:10.1007/s10699-011-9223-1.
  39. Katz, M., & Sherry, D. (2012). Leibniz’s laws of continuity and homogeneity. Notices of the American Mathematical Society, 11, 1550–1558. See http://www.ams.org/notices/201211/ and http://arxiv.org/abs/1211.7188.CrossRefGoogle Scholar
  40. Katz, M., & Sherry, D. (2013). Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis, 78(3), 571–625. doi:10.1007/s10670-012-9370-y.
  41. Keisler, H. J. (1976). Elementary calculus: An infinitesimal approach. Originally published by Prindle, Weber & Schmidt, now available freely online at http://www.math.wisc.edu/~keisler/calc.html
  42. Klein, F. (1908). Elementary mathematics from an advanced standpoint (Vol. 1, Arithmetic, algebra, analysis). Translation by E. R. Hedrick and C. A. Noble [Macmillan, New York, 1932] from the third German edition [Springer, Berlin, 1924]. Originally published as Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908).Google Scholar
  43. Kline, M. (1980). Mathematics. The loss of certainty. New York: Oxford University Press.Google Scholar
  44. Koetsier, T. (2010). Lakatos, Lakoff and Núñez: Towards a satisfactory definition of continuity. In G. Hanna, H. N. Jahnke, H. Pulte, et al. (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives (pp. 33–46). New York: Springer.Google Scholar
  45. L’Hôpital, G. de (1696). Analyse des Infiniment Petits pour l’Intelligence des Lignes Courbes [Infinitesimal calculus with applications to curved lines]. Paris: François Motalant.Google Scholar
  46. Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  47. Lakoff, G., & Núñez, R. (2000). Where mathematics comes from. New York: Basic Books.Google Scholar
  48. Larson, R., & Edwards, B. H. (2009). Calculus (9th ed.). Pacific Grove, CA: Brookes Cole.Google Scholar
  49. Laugwitz, D. (1987). Infinitely small quantities in Cauchy’s textbooks. Historia Mathematica, 14(3), 258–274.CrossRefGoogle Scholar
  50. Laugwitz, D. (1989). Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820. Archive for History of Exact Sciences, 39(3), 195–245.CrossRefGoogle Scholar
  51. Laugwitz, D. (1997). On the historical development of infinitesimal mathematics. American Mathematical Monthly, 104(7), 654–663.CrossRefGoogle Scholar
  52. Leibniz, G. W. (1684). Nova methodus pro maximis et minimis, itemque tangentibus, qua nec fractas, nec irrationales quantitates moratur, & sinulare pro illis calculi genus, Acta Eruditorum (October, 1684), 467–473.Google Scholar
  53. Meija-Ramos, J. P. & Tall, D. O. (2004). Reflecting on post-calculus-reform. Plenary presentation to Topic Group 12: Calculus at the 10th International Congress on Mathematical Education, Copenhagen, Denmark. http://www.icme-organisers.dk/tsg12/papers/tall-mejia-tsg12.pdf
  54. Meschkowski, H. (1965). Aus den Briefbüchern Georg Cantors. Archive for History of Exact Sciences, 2, 503–519.CrossRefGoogle Scholar
  55. Newton, I. (1704). Introductio ad Quadraturum Curvarum [Introduction to the quadrature of curves]. Retrieved from http://www.maths.tcd.ie/pub/HistMath/People/Newton/Quadratura/
  56. Núñez, R. E., Edwards, L. D., & Matos, J. F. (1999). Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics, 39, 45–65.CrossRefGoogle Scholar
  57. Perry, W. G. (1970). Forms of intellectual and ethical development in the college years: A scheme. New York: Holt, Rinehart & Winston.Google Scholar
  58. Pinto, M. M. F. & Tall, D. O. (1999). Student constructions of formal theory: Giving and extracting meaning. In O. Zaslavsky (Ed.), Proceedings of the 23rd conference of the International Group for the Psychology of Mathematics Education, (Vol. 4, pp. 65–73). Haifa, Israel: PME.Google Scholar
  59. Pinto, M. M. F. & Tall, D. O. (2001). Following student’s development in a traditional university classroom. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 57–64). Utrecht, The Netherlands: PME.Google Scholar
  60. Robinson, A. (1966). Non-standard analysis. Amsterdam: North-Holland Publishing Co.Google Scholar
  61. Roh, K. (2008). Students’ images and their understanding of definitions of the limit of a sequence. Educational Studies in Mathematics, 69, 217–233.CrossRefGoogle Scholar
  62. Schubring, G. (2005). Conflicts between generalization, rigor, and intuition. Number concepts underlying the development of analysis in 17–19th century France and Germany. New York: Springer-Verlag.Google Scholar
  63. Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.CrossRefGoogle Scholar
  64. Sherry, D. & Katz, M. (2014). Infinitesimals, imaginaries, ideals, and fictions. Studia Leibnitiana, to appear. See http://arxiv.org/abs/1304.2137
  65. Sinaceur, H. (1973). Cauchy et Bolzano. Revue d’Histoire des Sciences et de leurs Applications, 26(2), 97–112.CrossRefGoogle Scholar
  66. Stewart, J. (2011). Calculus (7th ed.). Pacific Grove, CA: Brookes Cole.Google Scholar
  67. Stroyan, K D. (1972). Uniform continuity and rates of growth of meromorphic functions. In W. J. Luxemburg & A. Robinson, (Eds.), Contributions to non-standard analysis (pp. 47–64). Amsterdam: North-Holland.Google Scholar
  68. Tall, D. O. (1979). The calculus of Leibniz, an alternative modern approach. Mathematical Intelligencer, 2, 54–55.CrossRefGoogle Scholar
  69. Tall, D. O. (1980). Looking at graphs through infinitesimal microscopes, windows and telescopes. Mathematical Gazette, 64, 22–49.CrossRefGoogle Scholar
  70. Tall, D. O. (1982a). The blancmange function, continuous everywhere but differentiable nowhere. Mathematical Gazette, 66, 11–22.CrossRefGoogle Scholar
  71. Tall, D. O. (1982b). Elementary axioms and pictures for infinitesimal calculus. Bulletin of the IMA, 18, 43–48.Google Scholar
  72. Tall, D. O. (1986). Building and testing a cognitive approach to the calculus using interactive computer graphics. Ph. D. thesis, University of Warwick.Google Scholar
  73. Tall, D. O. (1991). Reflections. In D. O. Tall (Ed.), Advanced mathematical thinking (pp. 251–259). Dordrecht: Kluwer.CrossRefGoogle Scholar
  74. Tall, D. O. (2001). Natural and formal infinities. Educational Studies in Mathematics, 48(2&3), 199–238.CrossRefGoogle Scholar
  75. Tall, D. O. (2004). Thinking through three worlds of mathematics. In M. Høines & A. Fuglestad (Eds.), Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 281–288). Bergen, Norway: PME.Google Scholar
  76. Tall, D. O. (2008). The transition to formal thinking in mathematics. Mathematics Education Research Journal, 20(2), 5–24.CrossRefGoogle Scholar
  77. Tall, D. O. (2010). Perceptions, operations and proof in undergraduate mathematics. CULMS Newsletter (Community for Undergraduate Learning in the Mathematical Sciences), University of Auckland, New Zealand, 2, November 2010, 21–28.Google Scholar
  78. Tall, D. O. (2012). A sensible approach to the calculus. El cálculo y su enseñanza (Handbook on Calculus and its Teaching). 3, 43–70. Available on the internet at http://mattec.matedu.cinvestav.mx/el_calculo/ or http://www.warwick.ac.uk/staff/David.Tall/downloads.html.
  79. Tall, D. O. (2013). How humans learn to think mathematically. New York: Cambridge University Press.Google Scholar
  80. Van Hiele, P. M. (1986). Structure and insight. Orlando, FL: Academic Press.Google Scholar
  81. Weber, K. (2004). Traditional instruction in advanced mathematics courses: A case study of one professor’s lectures and proofs in an introductory real analysis course. Journal of Mathematical Behavior, 23, 115–133.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Mathematics Education Research CentreUniversity of WarwickCoventryUK
  2. 2.Department of MathematicsBar Ilan UniversityRamat GanIsrael

Personalised recommendations