Advertisement

Educational Studies in Mathematics

, Volume 82, Issue 3, pp 397–415 | Cite as

Plato, Pascal, and the dynamics of personal knowledge

  • Michael Friedrich Otte
  • Tânia M. M. Campos
  • Alexandre S. Abido
Article

Abstract

Abstract educational practices are to be based on proven scientific knowledge, not least because the function science has to perform in human culture consists of unifying practical skills and general beliefs, the episteme and the techne (Amsterdamski, 1975, pp. 43–44). Now, modern societies first of all presuppose regular and standardized ways of organizing both our concepts and our institutions. The explanatory schemata resulting from this standardization tend to destroy individualism and enchantment. But mathematics education is in fact the only place in which to treat the human subject’s relationship with mathematics. And that is what mathematics education is all about: make the human subject grow intellectually and as a person by means of mathematics. At first sight, mathematics, in its formal guise, seems the opposite of philosophy, because philosophy constructs concepts (meanings), whereas mathematics deals with extensions of concepts (sets). We shall, however, turn this problem into an instrument, using the complementarity of intensions and extensions of theoretical terms as our main device for discussing the relationship between philosophy and mathematics education. The complementarity of the “how” and the “what” of our representations outlines, in fact, the terrain on which epistemology and education are to meet.

Keywords

Philosophy in mathematics education Complementarity Plato Pascal Peirce 

References

  1. Amsterdamski, S. (1975). Between experience and metaphysics: Philosophical problems of the evolution of science. Dordrecht: Reidel.CrossRefGoogle Scholar
  2. Aristotle. (1957). The physics. Cambridge/Mass: Harvard University Press.Google Scholar
  3. Bochner, S. (1966). The role of mathematics in the rise of science. Princeton: Princeton University Press.Google Scholar
  4. Burtt, E. (2003). The metaphysical foundations of modern science. New York: Dover.Google Scholar
  5. Carroll, L. (1988). What the tortoise said to Achilles. The complete works of Lewis Carroll (pp. 1104–1108). London: Penguin Books.Google Scholar
  6. Cassirer, E. (1910). Substanzbegriff und Funktionsbegriff. Untersuchungen über die Grundfragen der Erkenntniskritik. Berlin: B. Cassirer.Google Scholar
  7. Dear, P. (2007). The intelligibility of nature. Chicago: University of Chicago Press.Google Scholar
  8. Deleuze, G., & Guattari, F. (1994). What is philosophy? New York: Columbia University Press.Google Scholar
  9. Effros, E. G. (1998). Mathematics as language. In H. G. Dales & G. Oliveri (Eds.), Truth in Mathematics (pp. 131–146). Oxford: Oxford University Press.Google Scholar
  10. Foucault, M. (1970). The order of things: An archaeology of the human sciences. New York: Vintage Books.Google Scholar
  11. Foucault, M. (2002). The archaeology of knowledge. London and New York: Routledge.Google Scholar
  12. Giere, R. (1999). Science without laws. Chicago: The University of Chicago Press.Google Scholar
  13. Gowers, T. (2000). The two cultures of mathematics, In V.I. Arnold, et al. (Eds.), Mathematics: Frontiers and perspectives. AMS Publications.Google Scholar
  14. Hobbes, T. (1839). The English works of Thomas Hobbes of Malmesbury (W. Molesworth Ed.), 11 vols. London.Google Scholar
  15. Klein, J. (1968). Greek mathematical thought and the origin of algebra. Cambridge, MA: The MIT Press.Google Scholar
  16. Marinoff, L. (2000). Plato not Prozac. New York: Harper Collins.Google Scholar
  17. Mueller, I. (1969). Euclid’s elements and the axiomatic method. The British Journal for the Philosophy of Science, 20, 289–309.CrossRefGoogle Scholar
  18. Neurath, O. (1981). Gesammelte philosophische und methodologische schriften, Bd. 2 [Collected philosophical and methodological writings]. Vienna: Hoelder-Pichler-Tempsky.Google Scholar
  19. Otte, M. (1990). Arithmetic and geometry: Some remarks on the concept of complementarity. Studies in Philosophy and Education, 10, 37–62.CrossRefGoogle Scholar
  20. Otte, M. (2003). Complementarity, sets and numbers. Educational Studies in Mathematics, 53, 203–228.CrossRefGoogle Scholar
  21. Otte, M. (2006). Proof-analysis and continuity. Foundations of Science, 11, 121–155.CrossRefGoogle Scholar
  22. Pascal, B. (1952). Great books of the Western World by Encyclopedia Britannica, vol. 33.Google Scholar
  23. Pascal, B. (1995). Pensées, and other writings. Oxford: Oxford University Press.Google Scholar
  24. Peirce, C. S. (1958). CP = Collected Papers of Charles Sanders Peirce, Volumes I–VI, ed. by Charles Hartshorne and Paul Weiß, Cambridge, Mass. (Harvard University Press) 1931–1935, Volumes VII–VIII, ed. by Arthur W. Burks, Cambridge, Mass. (Harvard University Press) (quoted by no. of volume and paragraph)Google Scholar
  25. Peirce, C. S. (1967). MS = Manuscript, after Richard S. Robin, Annotated Catalogue of the Papers of Charles S. Peirce, The University of Massachusetts PressGoogle Scholar
  26. Plato (1997). Complete works. In J. M. Cooper, & D. S. Hutchinson (Eds.), Indianapolis: Hackett.Google Scholar
  27. Reid, C. (1970). Hilbert. Heidelberg: Springer.Google Scholar
  28. Rider, R. E. (1990). Measure of ideas, rules of language. In T. Fraengsmyr, J. Heilbron, & R. Rider (Eds.), The quantifying spirit of the 18th century (pp. 113–140). Berkeley: University of California Press.Google Scholar
  29. Skinner, Q. (1996). Reason and rhetoric in the philosophy of Hobbes. New York: Cambridge University Press.CrossRefGoogle Scholar
  30. Snow, C. P. (1993). The two cultures. New York: Cambridge University Press.Google Scholar
  31. Stewart, M. (2006). The courtier and the heretic. New York: W.W. Norton & Co.Google Scholar
  32. Stravinsky, I. (1983). Schriften I [Writings 1]. Mainz: Schott.Google Scholar
  33. Tasic, V. (2001). Mathematics and the roots of postmodern thought. New York: Oxford University Press.Google Scholar
  34. Thom, R. (1972). Modern mathematics: Does it exist? In G. Howson (Ed.), Developments in mathematical education (pp. 194–209). Cambridge: Cambridge University Press.Google Scholar
  35. Trabant, J. (2006). Europaeisches Sprachdenken [European thought experiments]. Munich: Beck.Google Scholar
  36. Ullmo, J. (1971). The geometric intelligence and the subtle intelligence. In F. Lionnais (Ed.), Great currents of mathematical thought.. Vol. II (pp. 5–13). New York: Dover.Google Scholar
  37. Watts, I. (1996). Myths of modern individualism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Wertheimer, M. (1945). Productive thinking. New York: Harper & Row.Google Scholar
  39. Williams, R. (1983). Keywords. Oxford: Oxford University Press.Google Scholar
  40. Zilsel, E. (2003). The social origins of modern science. Dordrecht: Kluwer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Michael Friedrich Otte
    • 1
  • Tânia M. M. Campos
    • 2
  • Alexandre S. Abido
    • 3
  1. 1.University of BielefeldBielefeldGermany
  2. 2.Universidade BandeirantesSão PauloBrazil
  3. 3.Universidade Federal de Mato GrossoCuiabaBrazil

Personalised recommendations