Educational Studies in Mathematics

, Volume 79, Issue 2, pp 215–237 | Cite as

Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations

  • Stanislaw SchukajlowEmail author
  • Dominik Leiss
  • Reinhard Pekrun
  • Werner Blum
  • Marcel Müller
  • Rudolf Messner


In this study which was part of the DISUM-project, 224 ninth graders from 14 German classes from middle track schools (Realschule) were asked about their enjoyment, interest, value and self-efficacy expectations concerning three types of mathematical problems: intra-mathematical problems, word problems and modelling problems. Enjoyment, interest, value and self-efficacy were assessed before and after a ten-lesson teaching unit promoting modelling competency related to the topics “Pythagoras’ theorem” and “linear functions”. The study aimed to answer the following research questions: (1) Do students’ enjoyment, value, interest and self-efficacy expectations differ depending on the type of task? (2) Does the treatment of modelling problems in classroom instruction influence these variables? (3) Are there any differential effects for different ways of teaching modelling problems, including a “directive”, teacher-centred instruction and an “operative-strategic”, more student-centred instruction emphasising group work and strategic scaffolding by the teacher? The findings show that there were no differences in students’ enjoyment, interest, value and self-efficacy between the three types of tasks. However, teaching oriented towards modelling problems had positive effects on some of the student variables, with the student-centred teaching method producing the most beneficial effects.


Affect Enjoyment Self-efficacy Modelling problems Word problems Self-regulation Teaching methods 


  1. Ames, C. (1992). Classrooms: Goals, structures, and student motivation. Journal of Educational Psychology, 84, 261–271.CrossRefGoogle Scholar
  2. Bandura, A. (2003). Self-efficacy: The exercise of control (6th ed.). New York: Freeman.Google Scholar
  3. Betz, N. E., & Hackett, G. (1983). The relationship of mathematics self-efficacy expectations to the selection of science-based college majors. Journal of Vocational Behavior, 23(3), 329–345.CrossRefGoogle Scholar
  4. Blum, W., Galbraith, P. L., Henn, W., & Niss, M. (2007). Mathematical modelling and applications in mathematics education. New York: Springer.CrossRefGoogle Scholar
  5. Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning mathematical modelling (pp. 15 -30). New York: Springer.Google Scholar
  6. Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling problems? The example “Sugarloaf” and the DISUM Project. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA12)—Education, engineering and economics (pp. 222–231). Horwood: Chichester.Google Scholar
  7. Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects—State, trends, and issues in mathematics instruction. Educational Studies in Mathematics, 22, 37–68.CrossRefGoogle Scholar
  8. Bong, M. (2002). Predictive utility of subject-, task-, and problem-specific self-efficacy judgments for immediate and delayed academic performances. Journal of Experimental Education, 70(2), 133–162.CrossRefGoogle Scholar
  9. Borromeo Ferri, R. (2007). Individual modelling routes of pupils—Analysis of modelling problems in mathematical lessons from a cognitive perspective. In C. Haines (Ed.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 260–270). Chichester: Horwood Publishing.Google Scholar
  10. Brophy, J. E., & Good, T. L. (1986). Teacher behavior and student achievement. In M. C. Wittrock (Ed.), Handbook of research on teaching (3rd ed., pp. 328–375). New York: Macmillan.Google Scholar
  11. Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.CrossRefGoogle Scholar
  12. Eccles, J. S., & Wigfield, A. (1995). In the mind of the actor: The structure of adolescents' academic achievement task value and expectancy-related beliefs. Personality and Social Psychology Bulletin, 21, 215–225.CrossRefGoogle Scholar
  13. Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53, 109–132.CrossRefGoogle Scholar
  14. Efklides, A., & Volet, S. (2005). Emotional experiences during learning: Multiple, situated and dynamic. Learning and Instruction, 15(5), 377–380.CrossRefGoogle Scholar
  15. Fennema, E. H. (1989). The study of affect and mathematics: A proposed genetic model for research. In D. B. McLeod & V. M. Adams (Eds.), Affect and mathematical problem solving: A new perspective (pp. 205–219). New York: Springer.CrossRefGoogle Scholar
  16. Fraser, B. J., Walberg, H. J., Welch, W. W., & Hattie, J. (1987). Syntheses of educational productivity research. International Journal of Educational Research, 11, 147–252.CrossRefGoogle Scholar
  17. Frenzel, A. C., Jullien, S., & Pekrun, R. (2006). Thomas hat 60 Euro gespart.. oder 1/4x + 60 = x. Freude und Angst beim Bearbeiten von Text- und Rechenaufgaben. Mathematik Lehren, 57–59.Google Scholar
  18. Frenzel, A. C., Pekrun, R., & Goetz, T. (2007). Perceived learning environment and students’ emotional experiences: A multilevel analysis of mathematics classrooms. Learning and Instruction, 17, 478–493.CrossRefGoogle Scholar
  19. Galbraith, P. L., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 143–162.CrossRefGoogle Scholar
  20. Gläser-Zikuda, M., Fuß, S., Laukenmann, M., Metz, K., & Randler, C. (2005). Promoting students’ emotions and achievement—Instructional design and evaluation of the ECOLE approach. Learning and Instruction, 15, 481–495.CrossRefGoogle Scholar
  21. Goetz, T., Frenzel, A. C., Pekrun, R., Hall, N. C., & Lüdtke, O. (2007). Between- and within-domain relations of students’ academic emotions. Journal of Educational Psychology, 99, 715–733.CrossRefGoogle Scholar
  22. Greene, B. A., DeBacker, T. K., Ravindran, B., & Krows, A. J. (1999). Goals, values, and beliefs as predictors of achievement and effort in high school mathematics classes. Sex Roles, 40(5–6), 421–458.CrossRefGoogle Scholar
  23. Greeno, J. G. (1989). Situations, mental models und generative knowledge. In D. Klahr & K. Kotovsky (Eds.), Complex information professing: The impact of Herbert A. Simon (pp. 285–318). Hillsdale, NJ: Ablex.Google Scholar
  24. Hannula, M. S. (2007). Finnish research on affect in mathematics: Blended theories, mixed methods and some findings. Zentralblatt für Didaktik der Mathematik, 39, 197–203.CrossRefGoogle Scholar
  25. Hannula, M. S., Pantziara, M., Wæge, K., & Schlöglmann, W. (2009). Introduction. Multimethod approaches to the multidimensional affect in mathematics education. Paper presented at the CERME 6, Lyon.Google Scholar
  26. Hänze, M., & Berger, R. (2007). Cooperative learning, motivational effects, and student characteristics: An experimental study comparing cooperative learning and direct instruction in 12th grade physics classes. Learning and Instruction, 17, 29–41.CrossRefGoogle Scholar
  27. Hattie, J., Biggs, J. B., & Purdie, N. (1996). Effects of learning skills interventions on student learning: A metaanalysis. Review of Educational Research, 66, 99–136.Google Scholar
  28. Hoffman, B. & Spatariu, A. (2008). The influence of self-efficacy and metacognitive prompting on math problem-solving efficiency. Contemporary Educational Psychology, 33(4), 875–893.CrossRefGoogle Scholar
  29. Köller, O., Baumert, J., & Schnabel, K. (2001). Does interest matter? The relationship between academic interest and achievement in mathematics. Journal for Research in Mathematics Education, 32(5), 448–470.CrossRefGoogle Scholar
  30. Krapp, A. (2000). Interest and human development during adolescence: An educational–psychological approach. In J. Heckhausen (Ed.), Motivational psychology of human development (pp. 109–128). Amsterdam: Elsevier.CrossRefGoogle Scholar
  31. Kuntze, S., & Reiss, K. (2006). Profile mathematikbezogener motivationaler Prädispositionen. Zusammenhänge zwischen Motivation, Interesse, Fähigkeitskonzepten und Schulleistungsentwicklung in verschiedenen Lernumgebungen. [Profiles of motivational dispositions. Interactions between motivation, interest, self concepts and achievement in different learning environments]. Mathematica Didactica, 29(2), 24–48.Google Scholar
  32. Larson, R. W., & Richards, M. H. (1991). Boredom in the middle school years. Blaming schools versus blaming students. American Journal of Education, 99(4), 418–443.CrossRefGoogle Scholar
  33. Leder, G., Pehkonen, E., & Törner, G. (2002). Beliefs—A hidden variable in mathematics education? Dordrecht: Kluwer.Google Scholar
  34. Leiss, D. (2007). Hilf mir es selbst zu tun. Franzbecker: Lehrerinterventionen beim mathematischen Modellieren. [“Help me to do it myself”. Teachers' interventions in mathematical modelling prosesses]. Hildesheim: Franzbecker.Google Scholar
  35. Leiss, D., & Blum, W. (2006). Beschreibung zentraler mathematischer Kompetenzen. [Discription of central mathematical competencies]. In W. Blum, C. Drüke-Noe, R. Hartung, & O. Köller (Eds.), Die Bildungsstandards Mathematik (pp. 33–50). Berlin: Cornelsen Scriptor.Google Scholar
  36. Leiss, D., Blum, W., Messner, R., Müller, M., Schukajlow, S., & Pekrun, R. (2008). Modellieren lehren und lernen in der Realschule. [Teaching and learning of modelling in the middle track school]. Beiträge zum Mathematikunterricht (pp. 370–373). Münster: WTM Verlag.Google Scholar
  37. Leiss, D., Schukajlow, S., Blum, W., Messner, R., & Pekrun, R. (2010). The role of the situation model in mathematical modelling—Task analyses, student competencies, and teacher interventions. Journal für Mathematikdidaktik, 31(1), 119–141.CrossRefGoogle Scholar
  38. Lewis, M. W., Haviland-Jones, J. M., & Feldmann Barrett, L. (2008). Handbook of emotions (3rd ed.). New York: The Guilford Press.Google Scholar
  39. Linnenbrink, E. A. (2006). Emotion research in education: Theoretical and methodological perspectives on the integration of affect, motivation, and cognition. Educational Psychology Review, 18(4), 307–314.CrossRefGoogle Scholar
  40. Linnenbrink, E. A. (2007). The role of affect in student learning: A multi-dimensional approach to considering the interaction of affect, motivation, and engagement. In P. A. Schutz & R. Pekrun (Eds.), Emotion in education (pp. 107–124). London: Elsevier.Google Scholar
  41. Linnenbrink-Garcia, L., & Pekrun, R. (2011). Students' emotions and academic engagement. Introduction to the special issue. Contemporary Educational Psychology, 36, 1–3.CrossRefGoogle Scholar
  42. Ma, X., & Kishor, N. (1997). Attitude toward self, social factors, and achievement in mathematics: A meta-analytic review. Educational Psychology Review, 9(2), 89–120.CrossRefGoogle Scholar
  43. Malmivuori, M.-L. (2006). Affect and self-regulation. Educational Studies in Mathematics, 63, 149–164.CrossRefGoogle Scholar
  44. Marcou, A. & Lerman, S. (2007). Changes in students' motivational beliefs and performance in a self-regulated mathematical problem-solving environment. Paper presented at the CERME 5, Cyprus.Google Scholar
  45. McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics, teaching and learning (pp. 575–596). New York: Macmillan.Google Scholar
  46. Metallidou, P., & Vlachou, A. (2010). Children's self-regulated learning profile in language and mathematics: The role of task value beliefs. Psychology in the Schools, 47(8), 776–788.CrossRefGoogle Scholar
  47. Murphy, T. H., & Alexander, A. (2000). Motivational exploration of motivation terminology. Contemporary Educational Psychology, 25, 3–53.CrossRefGoogle Scholar
  48. Niss, M., Blum, W., & Galbraith, P. L. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 1–32). New York: Springer.Google Scholar
  49. Nurmi, J.-E., & Aunola, K. (2005). Task-motivation during the first school years: A person-oriented approach to longitudinal data. Learning and Instruction, 15(2), 103–122.CrossRefGoogle Scholar
  50. Op’t Eynde, P., De Corte, E., & Verschaffel, L. (2006). "Accepting emotional complexity": A socio-constructivist perspective on the role on the role of emotions in the mathematics classroom. Educational Studies in Mathematics, 63, 193–207.CrossRefGoogle Scholar
  51. Pajares, F., & Graham, L. (1999). Self-Efficacy, motivation constructs, and mathematics performance of entering middle school students. Contemporary Educational Psychology, 24, 124–139.CrossRefGoogle Scholar
  52. Panaoura, A., Demetriou, A. & Gagatsis, A. (2009). Mathematical modeling, self-representation and self-regulation. Paper presented at the CERME 6, Lyon.Google Scholar
  53. Panaoura, A., Gagatsis, A., & Demetriou, A. (2009). An intervention to the metacognitive performance: Self-regulation in mathematics and mathematical modeling. Acta Didactica Universitatis Comenianae Mathematics, 9, 63–79.Google Scholar
  54. Pekrun, R., Elliot, A. J., & Maier, M. A. (2009). Achievement goals and achievement emotions: Testing a model of their joint relations with academic performance. Journal of Educational Psychology, 101, 115–135.CrossRefGoogle Scholar
  55. Pekrun, R., Goetz, T., Daniels, L. M., Stupnisky, R. H., & Perry, R. P. (2010). Boredom in achievement settings: Exploring control–value antecedents and performance outcomes of a neglected emotion. Journal of Educational Psychology, 102(3), 531–549.CrossRefGoogle Scholar
  56. Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002a). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37(2), 91–105.CrossRefGoogle Scholar
  57. Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002b). Positive emotions in education. In E. Frydenberg (Ed.), Beyond coping: Meeting goals, visions, and challenges (pp. 149–174). Oxford, UK: Elsevier.Google Scholar
  58. Pekrun, R., vom Hofe, R., Blum, W., Frenzel, A. C., Goetz, T., & Wartha, S. (2007). Development of mathematical competencies in adolescence: The PALMA longitudinal study. In M. Prenzel (Ed.), Studies on the educational quality of schools. The final report on the DFG Priority Programme (pp. 17–37). Münster, Germany: Waxmann.Google Scholar
  59. Pietsch, J., Walker, R., & Chapman, E. (2003). The relationship among self-concept, self-efficacy, and performance in mathematics during secondary school. Journal of Educational Psychology, 95(3), 589–603.CrossRefGoogle Scholar
  60. Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-regulated learning. International Journal of Educational Research, 31, 459–470.CrossRefGoogle Scholar
  61. Pintrich, P. R., & DeGroot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33–40.CrossRefGoogle Scholar
  62. Pollak, H. (1979). The interaction between mathematics and other school subjects. New trends in mathematics teaching IV (pp. 232–248). Paris: UNESCO.Google Scholar
  63. Rasch, D., & Guiar, V. (2004). The robustness of parametric statistical methods. Psychology Science, 46, 175–208.Google Scholar
  64. Reusser, K., & Stebler, R. (1997). Every word problem has a solution. The social rationality of mathematical modelling at school. Learning and Instruction, 7(4), 309–327.CrossRefGoogle Scholar
  65. Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55, 68–78.CrossRefGoogle Scholar
  66. Schiefele, U. (1996). Topic interest, text representation, and quality of experience. Contemporary Educational Psychology, 21, 3–18.CrossRefGoogle Scholar
  67. Schiefele, U., Krapp, A., & Schreyer, I. (1993). Metaanalyse von Interesse und schulischer Leistung. [A metaanalysis of the interaction between scholastic interest and scholastic achievement]. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 25, 120–148.Google Scholar
  68. Schiefele, U., & Schreyer, I. (1994). Intrinsische Lernmotivation und Lernen. Ein Überblick zu Ergebnissen der Forschung. [Intrinsic motivation to learn and learning: A review of recent research findings]. Zeitschrift für Pädagogische Psycholgie, 8, 1–13.Google Scholar
  69. Schukajlow, S., Blum, W., Messner, R., Pekrun, R., Leiss, D., & Müller, M. (2009). Unterrichtsformen, erlebte Selbständigkeit, Emotionen und Anstrengung als Prädiktoren von Schüler-Leistungen bei anspruchsvollen mathematischen Modellierungsaufgaben. [Teaching methods, perceived self-regulation, emotions, and effort as predictors for students' performance while solving mathematical modelling tasks]. Unterrichtswissenschaft, 37(2), 164–186.Google Scholar
  70. Schunk, D. B. (1989). Self-efficacy and achievement behaviors. Educational Psychology Review, 1(3), 173–207.CrossRefGoogle Scholar
  71. Schunk, D. B., & Zimmerman, B. J. (2003). Self-regulation and learning. In: W. M. Reynolds & G. E. Miller (eds.), Vol. 7, pp. 59–78. Wiley: New York.Google Scholar
  72. Schutz, P. A., & Pekrun, R. (2007). Emotion in education. San Diego, CA: Academic.Google Scholar
  73. Seegers, G., & Boekaerts, M. (1993). Task motivation and mathematics achievement in actual task situations. Learning and Instruction, 3(2), 133–150.CrossRefGoogle Scholar
  74. Seidel, T., Rimmele, R., & Prenzel, M. (2003). Gelegenheitsstrukturen beim Klassengespräch und ihre Bedeutung für die Lemmotivation-Videoanalysen in Kombination mit Schülerselbsteinschätzungen. [Opportunities for learning in whole class communication and their importance for the motivation to learn. Analyses of videos combined with students' self-assesment]. Unterrichtswissenschaft, 31(2), 142–165.Google Scholar
  75. Seidel, T., & Shavelson, R. J. (2007). Teaching effectiveness research in the past decade: The role of theory and research design in disentangling meta-analysis results. Review of Educational Research, 77(4), 454–499.CrossRefGoogle Scholar
  76. Skaalvik, E. M., & Skaalvik, S. (2008). Self-concept and self-efficacy in mathematics: Relation with mathematics motivation and achievement. In F. M. Olsson (Ed.), New developments in the psychology of motivation (pp. 105–127). NY, US: Nova.Google Scholar
  77. Slavin, R. E., Hurley, E. A., & Chamberlain, A. (2003). Cooperative learning and achievement: Theory and research. In W. M. Reynolds & G. E. Miller (Eds.), Handbook of psychology: Educational psychology (Vol. 7, pp. 177–198). New York: Wiley.Google Scholar
  78. Usher, E. L., & Pajares, F. (2009). Sources of self-efficacy in mathematics: A validation study. Contemporary Educational Psychology, 34, 89–101.CrossRefGoogle Scholar
  79. Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse: Swets and Zeitlinger.Google Scholar
  80. Webb, N. M., & Palincsar, A. S. (1996). Group processes in the classroom. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 841–873). New York: Macmillan.Google Scholar
  81. Wigfield, A., & Eccles, J. S. (1992). The development of achievement task values: A theoretical analysis. Developmental Review, 12, 1–46.CrossRefGoogle Scholar
  82. Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation. Contemporary Educational Psychology, 25, 68–81.CrossRefGoogle Scholar
  83. Zan, R., Brown, L., Evans, J., & Hannula, M. S. (2006). Affect in mathematics education: An introduction. Educational studies in mathematics, 63(2), 113–122.CrossRefGoogle Scholar
  84. Zimmerman, B. J., & Martinez-Pons, M. (1990). Student differences in self-regulated learning: Relating grade, sex, and giftedness to self-efficacy and strategy use. Journal of Educational Psychology, 82, 51–59.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Stanislaw Schukajlow
    • 1
    Email author
  • Dominik Leiss
    • 2
  • Reinhard Pekrun
    • 3
  • Werner Blum
    • 1
  • Marcel Müller
    • 1
  • Rudolf Messner
    • 1
  1. 1.University of KasselKasselGermany
  2. 2.Leuphana University of LüneburgLüneburgGermany
  3. 3.University of MunichMunichGermany

Personalised recommendations