Advertisement

Educational Studies in Mathematics

, Volume 76, Issue 3, pp 281–303 | Cite as

The role of abduction in proving processes

  • Bettina Pedemonte
  • David Reid
Article

Abstract

This paper offers a typology of forms and uses of abduction that can be exploited to better analyze abduction in proving processes. Based on the work of Peirce and Eco, we describe different kinds of abductions that occur in students’ mathematical activity and extend Toulmin’s model of an argument as a methodological tool to describe students’ reasoning and to classify the different kinds of abduction. We then use this tool to analyze case studies of students’ abductions and to identify cognitive difficulties students encounter. We conclude that some types of abduction may present obstacles, both in the argumentation when the abduction occurs and later when the proof is constructed.

Keywords

Abduction Argumentation Proof Toulmin’s model 

References

  1. Arzarello, F., Micheletti, C., Olivero, F., & Robutti, O. (1998a). A model for analysing the transition to formal proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings of the Twentieth-second Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 24–31). Stellenbosch, South Africa.Google Scholar
  2. Arzarello, F., Micheletti, C., Olivero, F., & Robutti, O. (1998b). Dragging in Cabri and modalities of transition from conjectures to proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings of the Twentieth-second Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 32–39). Stellenbosch, South Africa.Google Scholar
  3. Boero, P., Garuti, R., Mariotti M. A. (1996). Some dynamic mental processes underlying producing and proving conjectures. In L. Puig & A. Gutierrez (Eds.), Proceedings of the Twentieth Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 121–128). Valencia, Spain.Google Scholar
  4. Bonfantini, M., & Proni, G. (1983). To guess or not to guess. In U. Eco & T. Sebeok (Eds.), The sign of three: Dupin, Holmes, Peirce (pp. 119–134). Bloomington, IN: Indiana University Press.Google Scholar
  5. Cifarelli, V., & Sáenz-Ludlow, A. (1996). Abductive processes and mathematics learning. In E. Jakubowski, D. Watkins, & H. Biske (Eds.), Proceedings of the eighteenth annual meeting of the North American chapter of the international group for the psychology of mathematics education Vol. I (pp. 161–166). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.Google Scholar
  6. Eco, U. (1983). Horns, hooves, insteps: Some hypotheses on three types of abduction. In U. Eco & T. Sebeok (Eds.), The sign of three: Dupin, Holmes, Peirce (pp. 198–220). Bloomington, IN: Indiana University Press.Google Scholar
  7. Fann, K. T. (1970). Peirce’s theory of abduction. The Hague: Martinus Nijhoff.Google Scholar
  8. Ferrando, E. (2006). The abductive system. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the thirtieth conference of the international group for the psychology of mathematics education Vol. 3 (pp. 57–64). Czech Republic: Prague.Google Scholar
  9. Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66, 3–21.CrossRefGoogle Scholar
  10. Knipping, C. (2003a). Argumentation structures in classroom proving situations. In M.A. Mariotti (Ed.), Proceedings of the Third Conference of the European Society in Mathematics Education (unpaginated). Bellaria, Italy. Retrieved from http://ermeweb.free.fr/CERME3/Groups/TG4/TG4_Knipping_cerme3.pdf
  11. Knipping, C. (2003b). Beweisprozesse in der Unterrichtspraxis: Vergleichende analysen von mathematikunterricht in Deutschland und Frankreich [Proving processes in teaching practices – Comparative analysis of mathematics teaching in France and Germany]. Hildesheim: Franzbecker.Google Scholar
  12. Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), 60–82.CrossRefGoogle Scholar
  13. Magnani, L. (2001). Abduction, reason and science: Processes of discovery and explanation. Dordrecht: Kluwer.CrossRefGoogle Scholar
  14. Mason, J. (1996). Abduction at the heart of mathematical being. In E. Gray (Ed.), Thinking about mathematics & music of the spheres: Papers presented for the inaugural lecture of Professor David Tall (pp. 34–40). Coventry: Mathematics Education Research Centre.Google Scholar
  15. Pedemonte, B. (2005). Quelques outils pour l’analyse cognitive du rapport entre argumentation et démonstration [Some tools to analyse the cognitive aspects of the relationship between argumentation and proof]. Recherche en Didactique des Mathématiques, 25(3), 313–348.Google Scholar
  16. Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66, 23–41.CrossRefGoogle Scholar
  17. Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM – The International Journal on Mathematics Education, 40(3), 385–400.CrossRefGoogle Scholar
  18. Peirce, C. S. (1867). On the natural classification of arguments. Presented 9 April 1867 to the American academy of arts and sciences. Proceedings of the American Academy of Arts and Sciences, 7, 261–287. Compiled in Peirce, C. S., 1960, 2.461–516.CrossRefGoogle Scholar
  19. Peirce, C. S. (1878). Deduction, induction, and hypothesis. Popular science monthly, 13(August), 470–82. (Compiled in Peirce, C. S., 1960, 2.619–644).Google Scholar
  20. Peirce, C. S. (1960). Collected papers. Cambridge, MA: Harvard University Press.Google Scholar
  21. Reid, D. (2003). Forms and uses of abduction. In M. A. Mariotti (Ed.), Proceedings of the third conference of the European society in mathematics education (unpaginated). Italy: Bellaria. Retrieved from http://ermeweb.free.fr/CERME3/Groups/TG4/TG4_Reid_cerme3.pdf.Google Scholar
  22. Tall, D. (1995). Cognitive development, representations and proof (Proceedings of justifying and proving in school mathematics, pp. 27–38). London: Institute of Education.Google Scholar
  23. Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  24. Toulmin, S. E. (1993). Les usages de l’argumentation ([The uses of argument] (P. De Brabanter, Trans.)). Paris: Presses Universitaires de France.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.DiDiMa srl. – Istituto per le Tecnologie DidatticheCNRGenoaItaly
  2. 2.School of EducationAcadia UniversityWolfville NSCanada

Personalised recommendations