Educational Studies in Mathematics

, Volume 74, Issue 2, pp 185–205 | Cite as

Abduction—A logical view for investigating and initiating processes of discovering mathematical coherences

  • Michael Meyer


According to theoretical concepts like constructivism, each learner has to build up knowledge on his or her own. The learner creates hypotheses in order to explain ‘facts’. Hypotheses do not guarantee certainty. They have to be verified. In this article, a theoretical framework will be presented which can help to understand and analyse the processes of creativity and reasoning. Peirce’s theory of abduction plays a decisive role in this framework. He elaborated abduction as the third elementary inference, besides deduction and induction. While abduction will be used to describe and analyse the process of discovering an explanatory hypothesis, deduction, induction and their combinations will be used to describe the different processes of verifying knowledge. Theoretical and empirical ways of discovering and verifying mathematical coherences will be presented and illustrated by fictive and empirical examples.


Abduction Deduction Discovery Hypotheses Induction Peirce Process of inquiry Proof Verification Classroom interaction 


  1. Bateson, G. (1979). Mind and nature. A necessary unity. London: Wildwood House.Google Scholar
  2. Beck, C., & Jungwirth, H. (1999). Deutungshypothesen in der interpretativen Forschung [“hypotheses in interpretative research”]. Journal für Mathematikdidaktik, 20(4), 231–259.Google Scholar
  3. Bruner, J. S. (1961). The act of discovery. Harvard Educational Review, 31, 21–32.Google Scholar
  4. Carrier, M. (2000). Empirische Hypothesenprüfung ohne Felsengrund [“Empirical testing of hypotheses without solid floor”]. In F. Stadler (Ed.), Elemente moderner Wissenschaftstheorie [“Elements of modern philosophy of science”] (pp. 43–56). Berlin: Springer.Google Scholar
  5. Cicourel, A. V. (1981). Basisregeln und normative Regeln im Prozess des Aushandelns von Status und Rolle [“Base rules and normative rules during the process of negotiating status and role”]. In Arbeitsgruppe Bielefelder Soziologen (Ed.), Alltagswissen, Interaktion und gesellschaftliche Wirklichkeit [“Everyday knowledge, interaction and social reality”], Volume 1 (pp. 147–188). Reinbeck: Rowohlt.Google Scholar
  6. Cifarelli, V. (1999). Abductive inference: Connection between problem posing and problem solving. In O. Zaslavsky (Ed.), Proceedings of PME XXIII, Haifa, vol. 2 (pp. 217–224).Google Scholar
  7. Eco, U. (1983). Horns, Hooves, Insteps. In U. Eco, U. Eco, & T. A. Sebeok (Eds.), The sign of the three. Dupin, Holmes, Peirce (pp. 198–220). Bloomington: Indiana UP.Google Scholar
  8. Esper, N., & Schornstein, J. (Eds.). (2006). Fokus Mathematik. Grade 6. Berlin: Cornelsen.Google Scholar
  9. Fann, K. T. (1970). Peirce’s theory of abduction. The Hague: Nijhoff.Google Scholar
  10. Ferrando, E. (2005). Abductive processes in conjecturing and proving. Ph.D. thesis, Lafayette: Purdue University.Google Scholar
  11. Fischbein, E. (1999). Intuition and schemata in mathematical reasoning. Educational studies in mathematics, 38, 11–50.CrossRefGoogle Scholar
  12. Frankfurt, H.-G. (1958). Peirce’s notion of abduction. Journal of Philosophy, 55, 593–597.CrossRefGoogle Scholar
  13. Habermas, J. (1972). Knowledge and human interest. London: Heinemann.Google Scholar
  14. Hanna, G. (1989). More than a formal proof. For the Learning of Mathematics, 9(1), 20–23.Google Scholar
  15. Hanna, G., & Barbeau, E. (2008). Proofs as bearers of mathematical knowledge. ZDM Mathematics Education, 40, 345–353.CrossRefGoogle Scholar
  16. Hanna, G., & Jahnke, H. N. (1996). Proof and proving. In A. Bishop et al. (Eds.), International handbook of mathematics education (pp. 877–908). Dordrecht: Kluwer.Google Scholar
  17. Hoffmann, M. (1999). Problems with Peirce’s concept of abduction. Foundations of Science, 4(3), 271–305.CrossRefGoogle Scholar
  18. Hoffmann, M. (2001). Skizze einer semiotischen Theorie des Lernens [“Sketch of a semiotic theory of learning”]. Journal für Mathematikdidaktik, 22(3/4), 231–251.Google Scholar
  19. Hoffmann, M. (2002). Erkenntnisentwicklung [“Knowledge development”]. TU Dresden: Philosophical faculty.Google Scholar
  20. Jahnke, H. N. (2007). Proofs and hypotheses. ZDM—International Journal of Mathematics Education, 39, 79–86.CrossRefGoogle Scholar
  21. Kahle, D., & Lörcher, G. A. (Eds.). (1996). Querschnitt Mathematik 10. Braunschweig: Westermann.Google Scholar
  22. Knipping, Ch. (2003). Beweisprozesse in der Unterrichtspraxis [“Processes of proofing in mathematics education”]. Hildesheim: Franzbecker.Google Scholar
  23. Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning (pp. 229–270). Hillshale: Erlbaum.Google Scholar
  24. Loska, R. (1995). Lehren ohne Belehrung [“Teaching without instruction”]. Bad Heilbrunn: Klinkhardt.Google Scholar
  25. Magnani, L. (2001). Abduction, reason and science. New York: Kluwer.Google Scholar
  26. Meyer, M. (2007). Entdecken und Begründen im Mathematikunterricht. Von der Abduktion zum Argument [“Discovering and proving in mathematics education. From abduction to argument”]. Hildesheim: Franzbecker.Google Scholar
  27. Meyer, M. (2008). Das Entdecken einer Entdeckung. Die Abduktion als Forschungsgegenstand und -logik [“The discovery of a discovery. Abduction as an object of research and its logic“]. In H. Jungwirth & G. Krummheuer (Eds.), Der Blick nach innen [“The view in the inside”](Vol. 2, pp. 29–71). Münster: Waxmann.Google Scholar
  28. Meyer, M. (2009). Abduktion, Induktion—Konfusion. Bemerkungen zur Logik der interpretativen Sozialforschung [“Abduction, induction – confusion. Remarks for the logic of interpretative social research”]. Zeitschrift für Erziehungswissenschaft, 2, 302–320.CrossRefGoogle Scholar
  29. Meyer, M., & Voigt, J. (2008). Entdecken mit latenter Beweisidee. Analyse von Schulbuchseiten [“Discovery with a latent idea of proof. Analysis of schoolbook pages”]. Journal für Mathematik-Didaktik, 29(2), 124–152.Google Scholar
  30. Meyer, M., & Voigt, J. (2009). Entdecken, Prüfen und Begründen. Gestaltung von Aufgaben zur Erarbeitung mathematischer Sätze [“Discovering, testing and proofing. Construction of tasks for the learning of mathematical theorems”]. Mathematica Didactica.
  31. Minnameier, G. (2005). Wissen und inferentielles Denken [“Knowledge and inferential thinking”]. Frankfurt a.M.: Lang.Google Scholar
  32. Olander, H. T., & Robertson, H. C. (1973). The effectiveness of discovery and expository methods in the teaching of fourth-grade mathematics. Journal for Research in Mathematics Education, 4(1), 33–44.CrossRefGoogle Scholar
  33. Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66, 23–41.CrossRefGoogle Scholar
  34. Peirce, C. S. CP, Collected papers of Charles Sanders Peirce. Cambridge: Harvard UP. Volumes I–VI edited by C. Hartshorne & P. Weissed, 1931–1935; Volumes VII–VIII, edited by A.W. Burks, 1958, quotations according to volume and paragraph.Google Scholar
  35. Peirce, C. S. EP II, The essential Peirce. In N. Houser & Ch Kloesel (Eds.), Selected philosophical writings (1893–1913) (Vol. 2). Bloomington: Indiana UP.Google Scholar
  36. Polya, G. (1954a). Mathematics and plausible reasoning (Vol. 1). Princeton: Princeton UP.Google Scholar
  37. Polya, G. (1954b). Mathematics and plausible reasoning (Vol. 2). Princeton: Princeton UP.Google Scholar
  38. Polya, G. (1957). How to solve it. A new aspect of mathematical method. Princeton: Princeton UP.Google Scholar
  39. Ramsey, F. P. (1990). Truth and probability (1926). In D. H. Mellor (Ed.), Philosophical papers. Cambridge: Cambridge UP.Google Scholar
  40. Reid, D. A. (2004). Forms and uses of abduction. In: M. A. Mariotti (Ed.), Proceedings of CERME 3, Bellaria 2003.Google Scholar
  41. Rescher, N. (1995). Peirce on abduction, plausibility, and the efficiency of scientific inquiry. In N. Rescher (Ed.), Essays in the history of philosophy (pp. 309–326). Aldershot: Avebury.Google Scholar
  42. Riley, M. S., Greeno, J. G., & Heller, H. J. (1983). Development of children’s problem-solving ability in arithmetic. In H. P. Ginsburg (Ed.), The development of mathematical thinking (pp. 153–196). New York: Academic.Google Scholar
  43. Schurz, G. (2008). Patterns of abduction. Synthese, 164, 201–234.CrossRefGoogle Scholar
  44. Schwarzkopf, R. (2000). Argumentationsprozesse im Mathematikunterricht. Theoretische Grundlagen und Fallstudien [“Processes of argumentation in mathematical education.Theoretical backgrounds and case studies”]. Hildesheim: Franzbecker.Google Scholar
  45. Stegmüller, W. (1976). Hauptströmungen der Gegenwartsphilosophie [engl. version: “Main currents in contemporary German, British, and American philosophy”]. Volume I. Stuttgart: Körner.Google Scholar
  46. Steinbring, H. (2001). Der Sache mathematisch auf den Grund gehen—heißt Begriffe bilden [“To get to the mathematical bottom of something – means to form concepts”]. In Ch Selter & G. Walter (Eds.), Mathematik und gesunder Menschenverstand [“Mathematics and common sense”] (pp. 174–183). Leipzig: Klett.Google Scholar
  47. Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge UP.Google Scholar
  48. Voigt, J. (1984). Interaktionsmuster und Routinen im Mathematikunterricht. Theoretische Grundlagen und mikroethnographische Falluntersuchungen [“Interaction patterns and routines in instructing. Theoretical basics and microethnographical case studies”]. Weinheim: Beltz.Google Scholar
  49. Winch, W. A. (1913). Inductive versus deductive methods of teaching. Baltimore: Warwick.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.TU Dortmund, Institut für Entwicklung und Erforschung des Mathematikunterrichts, Vogelpothsweg 87DortmundGermany

Personalised recommendations