Advertisement

Educational Studies in Mathematics

, Volume 71, Issue 3, pp 199–218 | Cite as

Towards new documentation systems for mathematics teachers?

  • Ghislaine GueudetEmail author
  • Luc Trouche
Article

Abstract

We study in this article mathematics teachers’ documentation work: looking for resources, selecting/designing mathematical tasks, planning their succession, managing available artifacts, etc. We consider that this documentation work is at the core of teachers’ professional activity and professional development. We introduce a distinction between available resources and documents developed by teachers through a documentational genesis process, in a perspective inspired by the instrumental approach. Throughout their documentation work, teachers develop documentation systems, and the digitizing of resources entails evolutions of these systems. The approach we propose aims at seizing these evolutions, and more generally at studying teachers’ professional change.

Keywords

Artifacts Curriculum material Digital resources Documents Documentational geneses Instruments Operational invariants Teacher beliefs Professional development 

Notes

Acknowledgments

We wish to sincerely thank Carolyn Kieran for her kind help in rereading our paper and helping us to correct our English language, and, more generally, for her valuable advice.

References

  1. Adler, J. (2000). Conceptualising resources as a theme for teacher education. Journal of Mathematics Teacher Education, 3, 205–224. doi: 10.1023/A:1009903206236.CrossRefGoogle Scholar
  2. Arbaugh, F., & Brown, C. (2005). Analyzing mathematical tasks: a catalyst for change. Journal of Mathematics Teacher Education, 8, 499–536. doi: 10.1007/s10857-006-6585-3.CrossRefGoogle Scholar
  3. Assude, T. (2008). Teachers’ practices and degree of ICT integration. In D. Pitta-Pantazi, & G. Philippou (Eds.), Proceedings of the fifth congress of the European Society for Research in Mathematics Education. Larnacaus: CERME 5.Google Scholar
  4. Ball, D. L., & Cohen, D. (1996). Reform by the book: What is—or might be—the role of curriculum materials in teacher learning and instructional reform. Educational Researcher, 25(9), 6–8 14.Google Scholar
  5. Ball, D. L., Hill, H. C., & Bass, H. (2005). ‘Knowing mathematics for teaching. Who knows mathematics well enough to teach third grade, and how can we decide?’, American educator, fall 2005, 14–46.Google Scholar
  6. Béguin, P. (2005). Concevoir pour les genèses instrumentées (Designing for instrumented geneses). In P. Rabardel, & P. Pastré (Eds.), Modèles du sujet pour la conception. Dialectiques activités développement (pp. 31–52). Octarès: Toulouse.Google Scholar
  7. Bueno-Ravel, L., & Gueudet, G. (2008). Online resources in mathematics: Teachers’ genesis of use. In D. Pitta-Pantazi, & G. Philippou (Eds.), Proceedings of the fifth congress of the European Society for Research in Mathematics Education. Larnaca: CERME 5.Google Scholar
  8. Chevallard, Y. (2005). Steps towards a new epistemology in mathematics education. In M. Bosch (Ed.), Proceedings of the fourth congress of the European Society for Research in Mathematics Education. Sant Feliu de Guíxols: CERME 4.Google Scholar
  9. Christou, C., Eliophotou-Menon, M., & Philippou, G. (2004). Teachers’ concern regarding the adoption of a new mathematics curriculum: An application of CBAM. Educational Studies in Mathematics, 57, 157–176. doi: 10.1023/B:EDUC.0000049271.01649.dd.CrossRefGoogle Scholar
  10. Cobb, P., Zhao, Q., & Visnovska, J. (2008). Learning from and adapting the theory of realistic mathematics education. Education et Didactique, 2(1), 105–123.Google Scholar
  11. Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, instruction and research. Educational Evaluation and Policy Analysis, 25(2), 119–142. doi: 10.3102/01623737025002119.CrossRefGoogle Scholar
  12. Cooney, T. J. (1999). Conceptualizing teachers’ ways of knowing. Educational Studies in Mathematics, 38, 163–187. doi: 10.1023/A:1003504816467.CrossRefGoogle Scholar
  13. Cooney, T. J. (2001). Considering the paradoxes, perils and purposes for conceptualizing teacher development. In F.-L. Lin, & T. J. Cooney (Eds.), Making sense of mathematics teacher education (pp. 9–31). Dordrecht: Kluwer.Google Scholar
  14. French Education Ministry (2007). ‘Repères et références statistiques sur les enseignements, la formation et la recherche’ (Statistical indicators and references on teaching, training and research), http://media.education.gouv.fr/file/21/3/6213.pdf
  15. Gueudet, G. (2006). ‘Learning mathematics in class with online resources’. communication at the 17th ICMI study conference: Technology Revisited, Hanoï, Vietnam.Google Scholar
  16. Guin, D., Ruthven, K., & Trouche, L. (Eds.). (2005). The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument. New York: Springer.Google Scholar
  17. Guin, D., & Trouche, L. (2005). Distance training, a key mode to support teachers in the integration of ICT? Towards collaborative conception of living pedagogical resources. In M. Bosch (Ed.), Proceedings of the Fourth Conference of the European Society for Research in Mathematics Education. Sant Feliu de Guíxols: CERME 4.Google Scholar
  18. Lagrange, J.-B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and mathematics education: A multidimensional study of the evolution of research and innovation. In A. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second International Handbook of Mathematics Education (pp. 239–271). Dordrecht: Kluwer.Google Scholar
  19. Lagrange, J.-B., Bessières, D., Blanchard, M., Loisy, C., & Vandebrouck, F. (Eds.). (2007). ‘Genèses d’usages professionnels des technologies chez les enseignants’, rapport intermédiaire de l’ACI GUPTEn (Genesis of Professional Uses of Technologies by Teachers, intermediate report of the GUPTEn project), http://gupten.free.fr
  20. Leung, F. K. S., Graf, K.-D., & Lopez-Real, F. J. (Eds.) (2006). Mathematics education in different cultural traditions: A comparative study of East Asia and the West. Berlin: Springer.Google Scholar
  21. Monaghan, J. (2004). Teachers’ activities in technology-based mathematics. International Journal of Computers for Mathematical Learning, 9(3), 327–357. doi: 10.1007/s10758-004-3467-6.CrossRefGoogle Scholar
  22. Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings, learning cultures and computers. Dordrecht: Kluwer.Google Scholar
  23. Pédauque, R.T. (Ed.).(2006). Le document à la lumière du numérique (Document under digital light), C & F éditions, Caen.Google Scholar
  24. Rabardel, P. (1995). Les hommes et les technologies, approche cognitive des instruments contemporains, Armand Colin, Paris (English version at http://ergoserv.psy.univ-paris8.fr/Site/default.asp?Act_group = 1).
  25. Rabardel, P. (2005). Instrument subjectif et développement du pouvoir d’agir (Subjective instrument and development of action might). In P. Rabardel, & P. Pastré (Eds.), Modèles du sujet pour la conception. Dialectiques activités développement (pp. 11–29). Toulouse: Octarès.Google Scholar
  26. Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: A developmental perspective. In P. Rabardel and Y. Waern (eds.), Special Issue “From Computer Artifact to Mediated Activity”, Part 1: Organisational Issues, Interacting With Computers 15(5), 665–691.Google Scholar
  27. Rabardel, P., & Bourmaud, G. (2005). Instruments et systèmes d’instruments (Instruments and systems of instruments). In P. Rabardel, & P. Pastré (Eds.), Modèles du sujet pour la conception. Dialectiques activités développement (pp. 211–229). Toulouse: Octarès.Google Scholar
  28. Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of mathematics curricula. Review of Educational Research, 75(2), 211–246. doi: 10.3102/00346543075002211.CrossRefGoogle Scholar
  29. Ruthven, K. (2008). Teachers, technologies and the structures of schooling. In D. Pitta-Pantazi, & G. Philippou (Eds.), Proceedings of the fifth congress of the European Society for Research in Mathematics Education. Larnaca: CERME 5.Google Scholar
  30. Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4–14.Google Scholar
  31. Vergnaud, G. (1998). Toward a cognitive theory of practice. In A. Sierpinska, & J. Kilpatrick (Eds.), Mathematics education as a research domain: A search for identity (pp. 227–241). Dordrecht: Kluwer.Google Scholar
  32. Vygotsky, L. S. (1978). Thought and language. Cambridge: MIT Press (Original work published 1934).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.CREAD and IUFM de BretagneRennes CedexFrance
  2. 2.EducTice (INRP) and LEPS (Université de Lyon)LyonFrance

Personalised recommendations