Educational Studies in Mathematics

, Volume 69, Issue 1, pp 33–52 | Cite as

The problem of the particular and its relation to the general in mathematics education

Article

Abstract

Research in the didactics of mathematics has shown the importance of the problem of the particular and its relation to the general in teaching and learning mathematics as well as the complexity of factors related to them. In particular, one of the central open questions is the nature and diversity of objects that carry out the role of particular or general and the diversity of paths that lead from the particular to the general. The objective of this article is to show how the notion of semiotic function and mathematics ontology, elaborated by the onto-semiotic approach to mathematics knowledge, enables us to face such a problem.

Keywords

Process of generalization and particularization Generic element Semiotic function 

References

  1. Bloor, D. (1983). Wittgenstein. A social theory of knowledge. London, UK: Macmillan.Google Scholar
  2. Bolite Frant, J., Acevedo, J., & Font, V. (2006). Metaphors in mathematics classrooms: analyzing the dynamic process of teaching and learning of graph functions. In M. Bosch (Ed.) Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (CERME 4) (pp. 82–91). Barcelona: Universitat Ramon Llull, Spain.Google Scholar
  3. Chevallard, Y. (1992). Concepts fondamentaux de la didactique: perspectives apportées par une approache anthropologique [Founding concepts in didactics: perspectives from an anthropological approach]. Recherches en Didactique des Mathématiques, 12(1), 73–112.Google Scholar
  4. Contreras, A., Font, V., Luque, L., & Ordóñez, L. (2005). Algunas aplicaciones de la teoría de las funciones semióticas a la didáctica del análisis [Some applications of the theory of semiotic functions in the didactics of calculus]. Recherches en Didactique des Mathématiques, 25(2), 151–186.Google Scholar
  5. Descartes, R. (1986). Meditations on First Philosophy: With selections from the Objections and Replies, [J. Cottingham, transl. and ed.]. Cambridge, UK: Cambridge University Press.Google Scholar
  6. Ernest, P. (1998). Social constructivism as a philosophy of mathematics. New York, NY, USA: SUNY.Google Scholar
  7. Font, V., Godino, J. D., & D’Amore, B. (2007). An onto-semiotic approach to representations in mathematics education. For the Learning of Mathematics, 27(2), 1–7.Google Scholar
  8. Goddijn, A., Kindt, M., & Reuter, W. (2004). Geometry with applications and proofs. Utrecht, The Netherlands: Freudenthal Institute.Google Scholar
  9. Godino, J. D. (2002). Un enfoque ontológico y semiótico de la cognición matemática. [An ontological and semiotic approach of mathematical cognition]. Recherches en Didactique des Mathématiques, 22(2/3), 237–284.Google Scholar
  10. Godino, J. D., & Batanero, C. (1998). Clarifying the meaning of mathematical objects as a priority area of research in mathematics education. In A. Sierpinska, & J. Kilpatrick (Eds.) Mathematics Education as a Research Domain: A Search for Identity (pp. 177–195). Dordrecht, The Netherlands: Kluwer.Google Scholar
  11. Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in Mathematics Education. ZDM-The International Journal on Mathematics Education, 39(1-2), 127–135.CrossRefGoogle Scholar
  12. Godino, J. D., Contreras, A., & Font, V. (2006a). Análisis de procesos de instrucción basado en el enfoque ontológico-semiótico de la cognición matemática. [Analysis of the procedures of instruction based on the ontological-semiotic approach of mathematical cognition]. Recherches en Didactique des Mathématiques, 26(1), 39–88.Google Scholar
  13. Godino, J. D., Font, V., & Wilhelmi, M. R. (2006b). Análisis ontosemiótico de una lección sobre la suma y la resta [Ontosemiotic analysis of a lesson on addition and subtraction]. Revista Latinoamericana de Investigación en Matemática Educativa, Special Issue on Semiotics, Culture and Mathematical Thinking, 131-155.Google Scholar
  14. Godino, J. D., Batanero, C., & Roa, R. (2005). An onto-semiotic analysis of combinatorial problems and the solving processes by university students. Educational Studies in Mathematics, 60(1), 3–36.CrossRefGoogle Scholar
  15. Piaget, J. (2001). Studies in Reflecting Abstraction, translated and edited by R. Campbell. Hove, UK: Psychology Press.Google Scholar
  16. Presmeg, N. (1998a). A semiotic analysis of students’ own cultural mathematics. In A. Olivier, & K. Newstead (Eds.) Proceedings of the twenty-second annual conference of the International Group for the Psychology of Mathematics Education (pp. 136–151). Stellenbosch, South Africa: University of Stellenbosch.Google Scholar
  17. Presmeg, N. C. (1998b). Metaphoric and metonymic signification in mathematics. Journal of Mathematical Behavior, 17, 25–32.CrossRefGoogle Scholar
  18. Radford, L. (1997). On psychology, historical epistemology and the teaching of mathematics: towards a socio-cultural history of mathematics. For the Learning of Mathematics, 17(1), 26–33.Google Scholar
  19. Radford, L. (2003). Gestures, speech, and the sprouting of signs. Mathematical Thinking and Learning, 5(1), 37–70.CrossRefGoogle Scholar
  20. Radford, L. (2006a). The anthropology of meaning. Educational Studies in Mathematics, 61, 39–65.CrossRefGoogle Scholar
  21. Radford, L. (2006b). Elementos de una teoría cultural de la objetivación [Elements of a cultural theory of objectification]. Revista Latinoamericana de Investigación en Matemática Educativa, Special Issue on Semiotics, Culture and Mathematical Thinking, 103-129.Google Scholar
  22. Sfard, A. (2000). Symbolizing mathematical reality into being–or how mathematical discourse and mathematical objects create each other. In P. Cobb, P. E. Yackel, & K. McClain (Eds.) Symbolizing and communicating in mathematics classrooms (pp. 38–75). London, UK: Erlbaum.Google Scholar
  23. Wittgenstein, L. (1953). Philosophische Untersuchungen/Philosophical Investigations. New York, NY, USA: Macmillan.Google Scholar
  24. Wittgenstein, L. (1978). Remarks on the Foundations of Mathematics. Oxford, UK: Blackwell.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Departament of Didàctica de les CCEE i la Matemàtica, Facultat de Formació del ProfessoratUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departamento de Didáctica de las Ciencias, Facultad de Humanidades y Ciencias de la Educación Univesidad de JaénPasaje Las lagunillasJaénSpain

Personalised recommendations