Advertisement

Educational Studies in Mathematics

, Volume 66, Issue 2, pp 145–164 | Cite as

Syntax and Meaning as Sensuous, Visual, Historical forms of Algebraic Thinking

  • Luis Radford
  • Luis Puig
Article

Abstract

Before the advent of symbolism, i.e. before the end of the 16th Century, algebraic calculations were made using natural language. Through a kind of metaphorical process, a few terms from everyday life (e.g. thing, root) acquired a technical mathematical status and constituted the specialized language of algebra. The introduction of letters and other symbols (e.g. “+”, “=”) made it possible to achieve what is considered one of the greatest cultural accomplishments in human history, namely, the constitution of a symbolic algebraic language and the concomitant rise of symbolic thinking. Because of their profound historical ties with natural language, the emerging syntax and meanings of symbolic algebraic language were marked in a definite way by the syntax and meanings of the former. However, at a certain point, these ties were loosened and algebraic symbolism became a language in its own right. Without alluding to the theory of recapitulation, in this paper, we travel back and forth from history to the present to explore key passages in the constitution of the syntax and meanings of symbolic algebraic language. A contextual semiotic analysis of the use of algebraic terms in 9th century Arabic as well as in contemporary students' mathematical activity, sheds some light on the conceptual challenges posed by the learning of algebra.

Keywords

cultural semiotics equations history of algebra meaning ontogenesis phylogenesis recapitulation syntax 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. al-Khwārizmī, Muhammad ibn Mūsa: 1939, Kitāb al-Mukhtasar fī hisāb al-jabr wa'l-muqābala (Edited by Alī Mustafā Masharrafa and Muhammad Mursī Ahmad, Reprinted 1968), al-Qahirah, Cairo.Google Scholar
  2. al-Khwārizmī, Muhammad ibn Mūsa: 1992, Le Calcul Indien (Algorismus), (Edited by A. Allard), Albert Blanchard, Paris.Google Scholar
  3. Baxandall, M.: 1985, Patterns of Intention: On the Historical Explanation of Pictures, Yale University Press, New Haven and London.Google Scholar
  4. Bednarz, N., Kieran, C. and Lee, L.: 1996, Approaches to Algebra, Perspectives for Research and Teaching, Kluwer, Dordrecht.Google Scholar
  5. Boncompagni, B. (ed.): 1857, Scritti Di Leonardo Pisano Matematico Del Secolo Decimoterzo. I. Il Liber Abbaci di Leonardo Pisano, Tipografia delle Scienze Matematiche e Fisiche, Roma.Google Scholar
  6. Castoriadis, C.: 1975, L'Institution Imaginaire De La Société, Seuil, Paris.Google Scholar
  7. CP = Peirce, C. S.: 1931–1958, Collected Papers, Vol. I-VIII, Harvard University Press, Cambridge, Mass.Google Scholar
  8. Djebbar, A.: 1992, ‘Le traitement des fractions dans la tradition mathématique arabe du Maghreb’, in P. Benoit, K. Chemla and J. Ritter (eds.), Histoire de Fractions, Fractions D'histoire, Birkhäuser, Basel/Boston/Berlin, pp. 223–245.Google Scholar
  9. Filloy, E. and Rojano, T.: 1989, ‘Solving equations: The transition from arithmetic to Algebra’, For the Learning of Mathematics 9(2), 19–25.Google Scholar
  10. Franci, R.: 1992, ‘Des fractions arithmétiques aux fractions algébriques dans les trattati d'abaco du XIV siècle’, in P. Benoit, K. Chemla and J. Ritter, (eds.), Histoire de Fractions, Fractions d'histoire, Birkhäuser, Basel/Boston/Berlin, pp. 325–334.Google Scholar
  11. Furinghetti, F. and Radford, L.: 2002, ‘Historical conceptual developments and the teaching of mathematics: From phylogenesis and ontogenesis theory to classroom practice’, in L. English (ed.), Handbook of International Research in Mathematics Education, New Jersey, Lawrence Erlbaum, pp. 631–654.Google Scholar
  12. Høyrup, J.: 2002, Lengths, Widths, Surfaces. A Portrait of Old Babylonian Algebra and Its Kin, Springer, New York.Google Scholar
  13. Kant, I.: 1781, 1787/1929, Critique of Pure Reason (Translated by N. Kemp Smith; 2003 re-edition), Palgrave Macmillan, New York.Google Scholar
  14. Kaput, J. and Sims-Knight, J.: 1983, ‘Errors in translations to algebraic equations: Roots and implications’, Focus on Learning Problems in Mathematics 5, 63–78.Google Scholar
  15. Kirshner, D. and Awtry, T.: 2004, ‘Visual salience of algebraic transformations’, Journal for Research in Mathematics Education 35, 224–257.CrossRefGoogle Scholar
  16. Lektorsky, V.A.: 1984, Subject, Object, Cognition, Progress Publisher, Moscow.Google Scholar
  17. Leont'ev, A.N.: 1978, Activity, Consciousness, and Personality, Prentice-Hall, New Jersey.Google Scholar
  18. Mazzinghi, M.A. de’: 1967, Trattato di Fioretti (G. Arrighi, ed.), Domus Galileana, Pisa.Google Scholar
  19. Pea, R.D.: 1993, ‘Practices of distributed intelligence and designs for education’, in G. Salomon (ed.), Distributed Cognitions, Cambridge University Press, Cambridge, pp. 47–87.Google Scholar
  20. Puig, L.: 2004, History of Algebraic Ideas and Research on Educational Algebra, Regular Lecture presented at the Tenth International Congress of Mathematical Education, Copenhagen, Denmark. Text available at http://www.uv.es/~didmat/luis/
  21. Puig, L. and Rojano, T.: 2004, ‘The history of algebra in mathematics education’, in K. Stacey, H. Chick and M. Kendal (eds.), The Future of the Teaching and Learning of Algebra: The 12th ICMI Study, Kluwer, Norwood, MA, pp. 189–224.Google Scholar
  22. Radford, L.: 2000a, ‘The historical development of mathematical thinking and the contemporary student understanding of mathematics. Introduction’, in J. Fauvel and J. Maanen (eds.), History in Mathematics Education. The ICMI Study, Kluwer, Dordrecht, pp. 143–148.Google Scholar
  23. Radford, L.: 2000b, ‘Signs and meanings in students’ emergent algebraic thinking: A semiotic analysis’, Educational Studies in Mathematics 42 (3), 237–268.CrossRefGoogle Scholar
  24. Radford, L.: 2002a, ‘The seen, the spoken and the written. A semiotic approach to the problem of objectification of mathematical knowledge’, For the Learning of Mathematics 22 (2), 14–23.Google Scholar
  25. Radford, L.: 2002b, ‘On heroes and the collapse of narratives. A contribution to the study of symbolic thinking’, Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4, University of East Anglia, UK, pp. 81–88.Google Scholar
  26. Radford, L.: 2004, The Cultural-Epistemological Conditions of the Emergence of Algebraic Symbolism, Plenary Lecture Presented at the 2004 History and Pedagogy of Mathematics Conference, Uppsala, Sweden. Text available at: http://www.laurentian.ca/educ/lradford/
  27. Radford, L.: 2005, ‘Body, tool, and symbol: Semiotic reflections on cognition’, in E. Simmt and B. Davis (eds.), Proceedings of the 2004 Annual Meeting of the Canadian Mathematics Education Study Group, Université de Laval, Québec, pp. 111–117.Google Scholar
  28. Radford, L. (in press). Semiótica Cultural y Cognición, Plenary Lecture Presented at the 18 Reunión Latinoamericana de Matemática Educativa, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Mexico, July 2004, Text Available at: http://www.laurentian.ca/educ/lradford/
  29. Rashed, R.: 1984, ‘Introduction et notes’, in Diophante. Tome III. Les Arithmétiques. Livre IV, et Tome IV, Livres V, VI et VII, Texte de la Traduction Arabe De Qustā ibn Lūqā Établi Et Traduit Par Roshdi Rashed, Les Belles Lettres, Paris.Google Scholar
  30. Rosen, F.: 1831, The Algebra of Mohammed Ben Musa, Oriental Translation Fund, London.Google Scholar
  31. Sfard, A.: 1991, ‘On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin’, Educational Studies in Mathematics 22, 1–36.CrossRefGoogle Scholar
  32. Sigler, L.E.: 2002, Fibonacci's Liber Abaci. A Translation into Modern English of Leonardo Pisano's Book of Calculation, Springer Verlag, New York/Berlin/Heidelberg.Google Scholar
  33. Smagorinsky, P.: 2001, ‘If meaning is constructed, what is it made from? Toward a cultural theory of reading’, Review of Educational Research 71 (1), 133–169.CrossRefGoogle Scholar
  34. Stjernfelt, F.: 2000, ‘Diagrams as centerpiece of a peircean epistemology’, Transactions of the Charles S. Peirce Society 36 (3), 357–384.Google Scholar
  35. Sutherland, R., Rojano, T., Bell, A. and Lins, R. (eds): 2001, Perspectives in School Algebra, Kluwer, Dordrecht.Google Scholar
  36. Tannery, P, (ed.): 1893, Diophanti Alexandrini Opera Omnia Cum Graecis Commentariis. Edidit et latine interpretatus est Paulus Tannery, 2 vols. (Reprinted, 1974), B. G. Teubner, Stuttgart.Google Scholar
  37. Thomas, I.: 1939, Selections Ilustrating the History of Greek Mathematics, (Reprinted with additions and revisions, 1980, 1991), Harvard University Press, Cambridge, MA.Google Scholar
  38. Vygotsky, L.S.: 1986, Thought and Language (12th printing revised by A. Kozulin, 2000), MIT Press, Cambridge.Google Scholar
  39. Vygotsky, L.S.: 1998, Collected Works, Vol. 5, R. Rieber (ed.), Plenum Press, New York.Google Scholar
  40. Wagner, S. and Kieran, C. (eds.): 1989, Research Issues in the Learning and Teaching of Algebra, Lawrence Erlbaum & NCTM, Virginia.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Luis Radford
    • 1
  • Luis Puig
    • 2
  1. 1.École des sciences de l’éducationUniversité LaurentienneSudburyCanada
  2. 2.Departament de Didàctica de la MatemàticaUniversitat de ValènciaValenciaEspaña

Personalised recommendations