Educational Studies in Mathematics

, Volume 61, Issue 1–2, pp 11–38 | Cite as

Mathematical Epistemology from a Peircean Semiotic Point of View

  • Michael Otte


Learning is better than knowing, generalization is more illuminating than abstract generality or universality because we perceive and thus become conscious of change or development only. Signs and representations establish the dialectic of fixation on the one hand and transformation on the other, which is so essential to learning and cognition. Mathematical epistemology from a semiotic point of view therefore is above all a genetical epistemology. All real mathematical activity is concerned with representations of mathematical entities rather than with things in themselves and with the processes of continuous transformation of a given representation into others.

This paper tries to give an overview of the essential relationships between activity theory, epistemology and mathematical education, using the semiotics of Charles S. Peirce as a unifying reference. It is certainly beyond the scope of such a paper to spell out all the questions involved in every detail. Much of what is said in the four short sections to follow is calling for further concretization and research.

Key Words

complementarity of mathematical terms mathematical epistemology meaning Peirce sign 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bateson, G.: 1973, Steps to an Ecology of Mind, Paladin Frogsmore.Google Scholar
  2. Berkeley, G.: 1975, Philosophical Works, Everyman Lib, London.Google Scholar
  3. Chaitin, G.: 1999, The Unknowable, Springer, London.Google Scholar
  4. Chaitin, G.: 2001, Exploring Randomnes, Springer London.Google Scholar
  5. Damasio, A.R.: 1996, Descartes’ Error: Emotion, Reason, and the Human Brain, Papermac, New York.Google Scholar
  6. Durkheim, E.: 1995, The Elementary Forms of the Religious Life, Free Press, New York.Google Scholar
  7. Einstein, A.: 1953, ‘Geometry and experience’, in H. Feigl and M. Brodbeck (ed.), Readings in the Philosophy of Science, Appleton-Century-Crofts, New York, pp. 189–194.Google Scholar
  8. Elgin, C.: 1997, Between the Absolute and the Arbitrary, Cornell UP, Ithaca.Google Scholar
  9. Foellendal, D.: 1979, ‘Hermeneutics and the hypothetico-deductive method’, Dialectica 33, 319–336.CrossRefGoogle Scholar
  10. Frege, G.: 1969, Funktion, Begriff, Bedeutung, Vandenhoeck & Ruprecht, Göttingen.Google Scholar
  11. Gödel, K.: 1944, ‘Russell's mathematical logic’, in P.A. Schilpp (ed.), The Philosophy of Bertrand Russell, Open Court, La Salle.Google Scholar
  12. Gowers, T.: 2000, Two different Cultures of Mathematics, in: Arnold, A.O. Atiyah (eds.), Mathematics: Frontiers and Perspectives, AMS Publications.Google Scholar
  13. Jesseph, D.M.: 1993, Berkeley's Philosophy Of Mathematics, The University of Chicago Pess.Google Scholar
  14. Hintikka, J.: 1992, ‘Kant on the mathematical method’, in C. Posy (ed.), Kant's Philosophy of Mathematics, Kluwer Academic Publishers, Dordrecht.Google Scholar
  15. Hofstadter, D.: 1979, Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books, New York.Google Scholar
  16. Kvasz, L.: 1998, ‘History of geometry and the development of the form of its language’, Synthese 116, 141–186.CrossRefGoogle Scholar
  17. Kuyk, W.: 1977, Complementarity in Mathematics, Reidel, Dordrecht.Google Scholar
  18. Langer, S.K.: 1996, Philosophy in a New Key, Harvard University Press, Cambridge/Massachusetts.Google Scholar
  19. Locke, J.: 1894, An Essay Concerning Human Understanding, Oxford.Google Scholar
  20. MacKay, D.M.: 1969, Information, Mechanism and Meaning, MIT Press, Cambridge/Massachusetts.Google Scholar
  21. Mill, J.S.: 1884, A System of Logic, Longman, London.Google Scholar
  22. Minsky, M.: 1967, Computation, Prentice-Hall, Englewood Cliffs.Google Scholar
  23. Otte, M., Steinbring, H.: 1977, ‘Probleme der Begriffsentwicklung – zum Stetigkeitsbegriff, Didaktik der Mathematik 1, 16–25.Google Scholar
  24. Otte, M.: 1990, ‘Arithmetics and geometry – Some remarks on the concept of complementarity’, Studies in Philosophy and Education 10, 37–62.CrossRefGoogle Scholar
  25. Otte, M.: 1994, ‘Intuition and logic in mathematics’, in D.E. Robitaille, D.H. Wheeler and C. Kieran (eds.), Selected Lectures from the 7th International Congress on Mathematical Education, Les Presses de l'Université Laval, Sainte-Foy, pp. 271–284.Google Scholar
  26. Otte, M. and Panza, M.: 1997, ‘Mathematics as an activity and the analytic-synthetic distinction’, in Analysis and Synthesis in Mathematics, Kluwer Academic Publishers, The Netherlands, pp. 261–271.Google Scholar
  27. Otte, M.: 2003, ‘Complementarity, sets and numbers’, Educational Studies in Mathematics 53, 203–228.CrossRefGoogle Scholar
  28. Otte, M.: 2003a, ‘Does mathematics have objects? In what sense?’, Synthese 134, 181–216.CrossRefGoogle Scholar
  29. Otte, M.: 2004, Complementarity, Compassion and different Cultures of Mathematics, Bielefeld, in press.Google Scholar
  30. Peirce, C.P.: 1931–1935, in C. Hartshorne and P. Weiß (eds.), Collected Papers of Charles Sanders Peirce, Vols. I–VI, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  31. Peirce, C.P.: 1958, in A.W. Burks (ed.), zitiert nach Bandnummern und Paragraphen, Vols. VII–VIII, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  32. Peirce, C.P.: 1967, nach der Zählung von Richard S. Robin, Annotated Catalogue of the Papers of Charles S. Peirce, The University of Massachusetts Press, “Rules for Correct Reasoning”.Google Scholar
  33. Peirce, C.P.: 1976, in: C. Eisele (ed.), The New Elements of Mathematics by Charles S. Peirce, Vol. I–IV, Mouton/Humanities Press, The Hague-Paris/Atlantic Highlands, NJ.Google Scholar
  34. Peirce, C.P.: 1982, Writings of Charles S. Peirce, A Chronological Edition, Vols. 1–5 (bislang), Indiana University Press, Bloomington.Google Scholar
  35. Rucker, R.: 1982, Infinity and the Mind, Birkhäuser, Basel.Google Scholar
  36. Russell, B.: 1998, Introduction to Mathematical Philosophy, Routledge, London.Google Scholar
  37. Sacks, O.: 1970, The Man Who Mistook his Wife for a Hat, Touchstone.Google Scholar
  38. Sebeok, T.: 1995, ‘Indexicality’, in K.L. Ketner (ed.), Peirce and Contemporary Thought, Fordham University Press, New York, pp. 222–242.Google Scholar
  39. Skemp, R.R.: 1969, The Phsychology of Learning Mathematics, Penguin Books.Google Scholar
  40. Tarasti, E.: 2000, Existential Semiotics, Indiana University Press, Bloomington.Google Scholar
  41. Townsend, D.J. and Bever, Th.: 2001, Sentence Comprehension, MIT Press, Cambridge, Massachusetts.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Michael Otte
    • 1
  1. 1.University of BielefeldBielefeld

Personalised recommendations