Educational Psychology Review

, Volume 27, Issue 2, pp 291–304 | Cite as

High Element Interactivity Information During Problem Solving may Lead to Failure to Obtain the Testing Effect

Research into Practice


The testing effect occurs when learners who are tested rather than relearning material perform better on a final test than those who relearn. Based on cognitive load theory, it was predicted that the testing effect may not be obtained when the material being learned is high in element interactivity. Three experiments investigated conditions of the phenomenon using school students aged 8 to 9 years learning to interpret and use a bus table. Results from Experiments 1 and 2 indicated a reverse testing effect on an immediate test. Experiment 3 was similar to Experiments 1 and 2 but had a 1-week delayed test which showed no significant effect. It was suggested that the failure to obtain a testing effect was determined by the high levels of element interactivity of the material that had to be learned.


Cognitive load theory Testing effect Worked examples Element interactivity 


  1. Bartlett, F. C. (1932). Remembering: a study in experimental and social psychology. Oxford: Macmillan.Google Scholar
  2. Brainerd, C. J., & Reyna, V. F. (1995). Learning rate, learning opportunities, and the development of forgetting. Developmental Psychology, 31, 251–262. doi:10.1037/0012-1649.31.2.251.CrossRefGoogle Scholar
  3. Butler, A. C., & Roediger, H. L., III. (2007). Feedback enhances the positive effects and reduces the negative effects of multiple-choice testing. Memory and Cognition, 36, 604–616. doi:10.1080/09541440701326097.CrossRefGoogle Scholar
  4. Carpenter, S. K., & Pashler, H. (2007). Testing beyond words: using tests to enhance visuospatial map learning. Psychonomic Bulletin & Review, 14, 474–478. doi:10.3758/BF03194092.CrossRefGoogle Scholar
  5. Carpenter, S. K., Pashler, H., Wixted, J. T., & Vul, E. (2008). The effects of tests on learning and forgetting. Memory & Cognition, 36, 438–448. doi:10.3758/MC.36.2.438.CrossRefGoogle Scholar
  6. Carroll, W. M. (1994). Using worked examples as an instructional support in the algebra classroom. Journal of Educational Psychology, 86, 360–397. doi:10.1037/0022-0663.86.3.360.CrossRefGoogle Scholar
  7. Chi, M., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 7–75). Hillsdale: Erlbaum.Google Scholar
  8. Cooper, G., & Sweller, J. (1987). The effects of schema acquisition and rule automation on mathematical problem-solving transfer. Journal of Educational Psychology, 79, 347–362. doi:10.1037/0022-0663.79.4.347.CrossRefGoogle Scholar
  9. Coppens, L. C., Verkoeijen, P. P. J. L., & Rikers, R. M. J. P. (2011). Learning Adinkra symbols: the effect of testing. Journal of Cognitive Psychology, 23, 351–357. doi:10.1080/20445911.2011.507188.CrossRefGoogle Scholar
  10. Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114. doi:10.1017/S0140525X01003922.CrossRefGoogle Scholar
  11. De Groot, A. (1965). Thought and choice in chess. The Hague: Mouton. (Original work published 1946).Google Scholar
  12. Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques: promising directions from cognitive and educational psychology. Psychology Science in the Public Interest, 14, 4–58.CrossRefGoogle Scholar
  13. Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245. doi:10.1037/0033-295X.102.2.211.CrossRefGoogle Scholar
  14. Gates, A. I. (1917). Recitation as a factor in memorizing. Archives of Psychology, 40, 104.Google Scholar
  15. Geary, D. C. (2008). An evolutionarily informed education science. Educational Psychologist, 43, 179–195. doi:10.1080/00461520802392133.CrossRefGoogle Scholar
  16. Geary, D. C. (2012). Evolutionary educational psychology. In K. Harris, S. Graham, & T. Urdan (Eds.), APA educational psychology handbook (Vol. 1, pp. 597–621). Washington: American Psychological Association.Google Scholar
  17. Hogan, R. M., & Kintsch, W. (1971). Differential effects of study and test trials on long-term recognition and recall. Journal of Verbal Learning and Verbal Behavior, 10, 562–567. doi:10.1016/S0022-5371(71)80029-4.CrossRefGoogle Scholar
  18. Huber, D. E., Tomlinson, T. D., Jang, Y., & Hopper, W. J. (2015). The search of associative memory with recovery interference (SAM-RI) memory model and its application to retrieval practice paradigms. In Cognitive Modeling in Perception and Memory: A Festschrift for Richard M. Shiffrin. Psychology Press, ch. 5.Google Scholar
  19. Johnson, C. I., & Mayer, R. E. (2009). A testing effect with multimedia learning. Journal of Educational Psychology, 101, 621–629. doi:10.1037/a0015183.CrossRefGoogle Scholar
  20. Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001). When problem solving is superior to studying worked examples. Journal of Educational Psychology, 93, 579–588. doi:10.1037/0022-0663.93.3.579.CrossRefGoogle Scholar
  21. Leahy, W., & Sweller, J. (2008). The imagination effect increases with an increased intrinsic cognitive load. Applied Cognitive Psychology, 22, 273–283. doi:10.1002/acp.1373.CrossRefGoogle Scholar
  22. Lipowski, S. L., Pyc, M. A., Dunlosky, J., & Rawson, K. A. (2014). Establishing and explaining the testing effect in free recall for young children. Developmental Psychology, 50, 994–1000. doi:10.1037/a0035202.CrossRefGoogle Scholar
  23. Marsh, E. J., Roediger, H. L., Bjork, R. A., & Bjork, E. L. (2007). The memorial consequences of multiple-choice testing. Psychonomic Bulletin & Review, 14, 194–199. doi:10.3758/Bf03194051.CrossRefGoogle Scholar
  24. Miller, G. A. (1956). The magical number of seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63, 81–97. doi:10.1037/0033-295X.101.2.343.CrossRefGoogle Scholar
  25. Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs: Prentice Hall.Google Scholar
  26. Nievelstein, F., van Gog, T., van Dijck, G., & Boshuizen, H. P. A. (2013). The worked example and expertise reversal effect in less structured tasks: learning to reason about legal cases. Contemporary Educational Psychology, 38, 118–125. doi:10.1037/0022-0663.86.1.122.CrossRefGoogle Scholar
  27. Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive-load approach. Journal of Educational Psychology, 84, 429–434. doi:10.1037/0022-0663.84.4.429.CrossRefGoogle Scholar
  28. Paas, F., & van Merriënboer, J. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: a cognitive-load approach. Journal of Educational Psychology, 86, 122–133. doi:10.1037/0022-0663.86.1.122.CrossRefGoogle Scholar
  29. Peterson, L. R., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198. doi:10.1037/h0049234193–198.CrossRefGoogle Scholar
  30. Pyc, M. A., & Rawson, K. A. (2010). Why testing improves memory: mediator effectiveness hypothesis. Science, 330(6002), 335. doi:10.1126/science.1191465.CrossRefGoogle Scholar
  31. Roediger, H. L., & Karpicke, J. D. (2006a). The power of testing memory: basic research and implications for educational practice. Perspectives on Psychological Science, 1, 181–210. doi:10.1111/j.1745-6916.2006.00012.x.CrossRefGoogle Scholar
  32. Roediger, H. L., & Karpicke, J. D. (2006b). Test-enhanced learning: taking memory tests improves long-term retention. Psychological Science, 17, 249–255. doi:10.1111/j.1467-9280.2006.01693.x.CrossRefGoogle Scholar
  33. Roediger, H. L., Putnam, A.L., & Smith, M. (2011). Ten benefits of testing and their applications to educational practice. In J. Mestre & B. Ross (Eds.), The psychology of learning and motivation: Cognition in education. Vol. 55, pp. 1–36.Google Scholar
  34. Spitzer, H. F. (1939). Studies in retention. Journal of Educational Psychology, 30, 641–656. doi:10.1037/h0063404.CrossRefGoogle Scholar
  35. Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive Science, 12, 257–285. doi:10.1207/s15516709cog1202_4.CrossRefGoogle Scholar
  36. Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4, 295–312. doi:10.1016/0959-4752(94)90003-5.CrossRefGoogle Scholar
  37. Sweller, J. (2004). Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instructional Science, 32, 9–31. doi:10.1023/B:TRUC.0000021808.72598.4d.CrossRefGoogle Scholar
  38. Sweller, J. (2010). Element interactivity and intrinsic, extraneous and germane cognitive load. Educational Psychology Review, 22, 123–138. doi:10.1007/s10648-010-9128-5.CrossRefGoogle Scholar
  39. Sweller, J. (2011). Cognitive load theory. In J. Mestre & B. Ross (Eds.), The psychology of learning and motivation: cognition in education (Vol. 55, pp. 37–76). Oxford: Academic.Google Scholar
  40. Sweller, J. (2012). Human cognitive architecture: Why some instructional procedures work and others do not. In K. Harris, S. Graham, & T. Urdan (Eds.), APA educational psychology handbook (Vol. 1, pp. 295–325). Washington: American Psychological Association.Google Scholar
  41. Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12(3), 185–233. doi:10.1207/s1532690xci1203_1.CrossRefGoogle Scholar
  42. Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 2(1), 59–89. doi:10.1207/s1532690xci0201_3.CrossRefGoogle Scholar
  43. Sweller, J., & Sweller, S. (2006). Natural information processing systems. Evolutionary Psychology, 4, 434–458.Google Scholar
  44. Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.CrossRefGoogle Scholar
  45. Thompson, C. P., Wenger, S. K., & Bartling, C. A. (1978). How recall facilitates subsequent recall: a reappraisal. Journal of Experimental Psychology: Human Learning and Memory, 4, 210–221.Google Scholar
  46. Toppino, T. C., & Cohen, M. S. (2009). The testing effect and the retention interval. Experimental Psychology, 56, 252–257.CrossRefGoogle Scholar
  47. Van Gerven, P. W. M., Paas, F. G. W. C., Van Merriënboer, J. J. G., & Schmidt, H. G. (2002). Cognitive load theory and aging: effects of worked examples on training efficiency. Learning and Instruction, 12, 87–105. doi:10.1016/S0959-4752(01)00017-2.CrossRefGoogle Scholar
  48. Van Gog, T., & Kester, L. (2012). A test of the testing effect: acquiring problem-solving skills from worked examples. Cognitive Science, 36, 1532–1541. doi:10.1111/cogs.12002.CrossRefGoogle Scholar
  49. Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2006). Effects of process-oriented worked examples on troubleshooting transfer performance. Learning and Instruction, 16(2 SPEC. ISS), 154–164. doi:10.1016/j.learninstruc.2006.02.003.Google Scholar
  50. Van Gog, T., Kester, L., & Paas, F. (2011). Effects of worked examples, example-problem, and problem-example pairs on novices’ learning. Contemporary Educational Psychology, 36, 212–218. doi:10.1016/j.cedpsych.2010.10.004.CrossRefGoogle Scholar
  51. Van Merriënboer, J., Kester, L., & Pass, F. (2006). Teaching complex rather than simple tasks: balancing intrinsic and germane load to enhance transfer of learning. Applied Cognitive Psychology, 20, 343–352. doi:10.1002/acp.1250.CrossRefGoogle Scholar
  52. Verkoeijen, P. P. J. L., Bouwmeester, S., & Camp, G. (2012). A short term testing effect in cross-language recognition. Psychological Science, 23, 567–571. doi:10.1177/0956797611435132.CrossRefGoogle Scholar
  53. Wheeler, M. A., Ewers, M., & Buonanno, J. F. (2003). Different rates of forgetting following study versus test trials. Memory, 11, 571–580. doi:10.1080/09658210244000414.CrossRefGoogle Scholar
  54. Wiklund-Hörnqvist, C., Jonsson, B., & Nyberg, L. (2014). Strengthening concept learning by repeated testing. Scandinavian Journal of Psychology, 55, 10–16. doi:10.1111/sjop.12093.CrossRefGoogle Scholar
  55. Wilkins, N. J., & Rawson, K. A. (2013). Why does lag affect the durability of memory-based automaticity: loss of memory strength or interference? Acta Psychologica, 144, 390–396. doi:10.1016/j.actpsy.2013.07.021.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of EducationMacquarie UniversitySydneyAustralia
  2. 2.School of EducationUniversity of Western SydneyPenrithAustralia
  3. 3.School of EducationUniversity of New South WalesSydneyAustralia

Personalised recommendations