Educational Psychology Review

, Volume 23, Issue 3, pp 389–411 | Cite as

The Role of Working Memory in Multimedia Instruction: Is Working Memory Working During Learning from Text and Pictures?

  • Anne Schüler
  • Katharina Scheiter
  • Erlijn van Genuchten


A lot of research has focused on the beneficial effects of using multimedia, that is, text and pictures, for learning. Theories of multimedia learning are based on Baddeley’s working memory model (Baddeley 1999). Despite this theoretical foundation, there is only little research that aims at empirically testing whether and more importantly how working memory contributes to learning from text and pictures; however, a more thorough understanding of how working memory limitations affect learning may help instructional designers to optimize multimedia instruction. Therefore, the goal of this review is to stimulate such empirical research by (1) providing an overview of the methodologies that can be applied to gain insights in working memory involvement during multimedia learning, (2) reviewing studies that have used these methodologies in multimedia research already, and (3) discussing methodological and theoretical challenges of such an approach as well as the usefulness of working memory to explain learning with multimedia.


Multimedia learning Working memory Cognitive Theory of Multimedia Learning Cognitive Load Theory Dual-task methodology Working memory capacity 


  1. Aiken, L., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park: Sage.Google Scholar
  2. Andrade, J. (2001). Working memory in perspective. Hove: Psychology Press.Google Scholar
  3. Antonenko, P. D., Paas, F., Grabner, R., & Van Gog, T. (2010). Using electroencephalography to measure cognitive load. Educational Psychology Review, 22, 425–438. doi:10.1007/s10648-010-9130-y.CrossRefGoogle Scholar
  4. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation: Advances in research and theory (pp. 89–195). New York: Academic.Google Scholar
  5. Austin, K. A. (2009). Multimedia learning: Cognitive individual differences and display design techniques predict transfer learning with multimedia learning modules. Computers & Education, 53, 1339–1354. doi:10.1016/j.compedu.2009.06.017.CrossRefGoogle Scholar
  6. Baddeley, A. D. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology, 49, 5–28. doi:10.1080/027249896392784.CrossRefGoogle Scholar
  7. Baddeley, A. D. (1998). Recent developments in working memory. Current Opinion in Neurobiology, 8, 234–238. doi:10.1016/S0959-4388(98)80145-1.CrossRefGoogle Scholar
  8. Baddeley, A. D. (1999). Essentials of Human Memory. Hove: Psychology Press.Google Scholar
  9. Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417–423. doi:10.1016/S1364-6613(00)015382.CrossRefGoogle Scholar
  10. Baddeley, A. D., Emslie, H., Kolodny, J., & Duncan, J. (1998). Random generation and the executive control of working memory. Quarterly Journal of Experimental Psychology, 51, 819–852. doi:10.1080/027249898391413.CrossRefGoogle Scholar
  11. Brünken, R., Steinbacher, S., Plass, J. L., & Leutner, D. (2002). Assessment of cognitive load in multimedia learning using dual task methodology. Experimental Psychology, 49, 109–119. doi:10.1027//1618-3169.49.2.109.Google Scholar
  12. Brünken, R., Plass, J. L., & Leutner, D. (2004). Assessment of Cognitive Load in Multimedia Learning with Dual-Task Methodology: Auditory Load and Modality Effects. Instructional Science, 32, 115–132. doi:10.1023/B:TRUC.0000021812.96911.c5.CrossRefGoogle Scholar
  13. Brunyé, T. T., Taylor, H. A., Rapp, D. N., & Spiro, A. B. (2006). Learning procedures: The role of working memory in multimedia learning experiences. Applied Cognitive Psychology, 20, 917–940. doi:10.1002/acp.1236.CrossRefGoogle Scholar
  14. Carney, R. N., & Levin, R. N. (2002). Pictorial illustrations still improve students’ learning from text. Educational Psychology Review, 14, 5–26. doi:10.1023/A:1013176309260.CrossRefGoogle Scholar
  15. Carretti, B., Borella, E., Cornoldi, C., & De Beni, R. (2009). Role of working memory in explaining the performance of individuals with specific reading comprehension difficulties: A meta-analysis. Learning and Individual Differences, 19, 246–251. doi:10.1016/j.lindif.2008.10.002.CrossRefGoogle Scholar
  16. Cierniak, G., Scheiter, K., & Gerjets, P. (2009). Explaining the split-attention effect: Is the reduction of extraneous cognitive load accompanied by an increase in germane cognitive load? Computers in Human Behavior, 25(2), 315–324. doi:10.1016/j.chb.2008.12.020.CrossRefGoogle Scholar
  17. Cocchini, G., Logie, R. H., Della Sala, S., MacPherson, S. E., & Baddeley, A. D. (2002). Concurrent performance of two memory tasks: Evidence for domain-specific working memory systems. Memory & Cognition, 30, 1086–1095.CrossRefGoogle Scholar
  18. Colle, H. A., & Welsh, A. (1976). Acoustic masking in primary memory. Journal of Verbal Learning and Verbal Behaviour, 15, 17–31. doi:10.1016/S0022-5371(76)90003-7.CrossRefGoogle Scholar
  19. Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Science, 7, 547–552. doi:10.1016/j.tics.2003.10.005.CrossRefGoogle Scholar
  20. Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12, 769–786.CrossRefGoogle Scholar
  21. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Learning and Verbal Behavior, 19, 450–466. doi:10.1016/S0022-5371(80)90312-6.CrossRefGoogle Scholar
  22. De Beni, R., Pazzaglia, F., Gyselinck, V., & Meneghetti, C. (2005). Visuospatial working memory and mental representation of spatial description. European Journal of Cognitive Psychology, 17, 77–95. doi:10.1080/09541440340000529.CrossRefGoogle Scholar
  23. Della Sala, S., Gray, C., Baddeley, A. D., & Wilson, L. (1997). Visual Pattern Test: A test of short-term visual recall. London: Harcourt Assessment.Google Scholar
  24. Della Sala, S., Gray, C., Baddeley, A., Allamano, N., & Wilson, L. (1999). Pattern spans: A tool for unwelding visuo-spatial memory. Neuropsychologia, 37, 1189–1199. doi:10.1016/S0028-3932(98)00159-6.CrossRefGoogle Scholar
  25. Doolittle, P. E., & Mariano, G. J. (2008). Working memory capacity and mobile multimedia learning environments: Individual differences in learning while mobile. Journal of Educational Multimedia and Hypermedia, 17, 511–530.Google Scholar
  26. Doolittle, P. E., Terry, K. P., & Mariano, G. J. (2009). Multimedia learning and working memory capacity. In R. Zheng (Ed.), Cognitive effects of multimedia learning (pp. 17–33). London: Premier Reference Source.Google Scholar
  27. Dutke, S., & Rinck, M. (2006). Multimedia learning: Working memory and the learning of word and picture diagrams. Learning and Instruction, 16, 526–537. doi:10.1016/j.learninstruc.2006.10.002.CrossRefGoogle Scholar
  28. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology, 128, 309–331. doi:10.1037/0096-3445.128.3.309.Google Scholar
  29. Farmer, E. W., Berman, J. V. F., & Fletcher, Y. L. (1986). Evidence for a visuo-spatial scratch-pad in working memory. The Quarterly Journal of Experimental Psychology, 38(4-A), 675–688.Google Scholar
  30. Fischer, M. H., & Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. Quarterly Journal of Experimental Psychology, 61, 825–850. doi:10.1080/17470210701623605.CrossRefGoogle Scholar
  31. Gathercole, S., & Baddeley, A. (1993). Working memory and language processing. Hove: Erlbaum.Google Scholar
  32. Ginns, P. (2005). Meta-analysis of the modality effect. Learning and Instruction, 15, 313–331. doi:10.1016/j.learninstruc.2005.07.001.CrossRefGoogle Scholar
  33. Gyselinck, V., Ehrlich, M.-F., Cornoldi, C., de Beni, R., & Dubois, V. (2000). Visuospatial working memory in learning from multimedia systems. Journal of Computer Assisted Learning, 16, 166–176. doi:10.1046/j.1365-2729.2000.00128.x.CrossRefGoogle Scholar
  34. Gyselinck, V., Cornoldi, C., Dubois, V., de Beni, R., & Ehrlich, M.-F. (2002). Visuospatial memory and phonological loop in learning from multimedia. Applied Cognitive Psychology, 16, 665–685. doi:10.1002/acp.823.CrossRefGoogle Scholar
  35. Gyselinck, V., Jamet, E., & Dubois, V. (2008). The role of working memory components in multimedia comprehension. Applied Cognitive Psychology, 22, 353–374. doi:10.1002/acp.1411.CrossRefGoogle Scholar
  36. Irwin, J. R., & McClelland, G. H. (2003). Negative consequences of dichotomizing continuous predictor variables. Journal of Market Research, 40, 366–371. doi:10.1509/jmkr.40.3.366.19237.CrossRefGoogle Scholar
  37. Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189–217. doi:10.1037/0096-3445.133.2.189.CrossRefGoogle Scholar
  38. Kruley, P., Sciama, S. C., & Glenberg, A. M. (1994). On-line processing of textual illustrations in the visuospatial sketchpad: Evidence from dual-task studies. Memory & Cognition, 22, 261–272.CrossRefGoogle Scholar
  39. Lawrence, B. M., Myerson, J., Oonk, H. M., & Abrams, R. A. (2001). The effect of eye and limb movements on working memory. Memory, 9, 433–444. doi:10.1080/09658210143000047.CrossRefGoogle Scholar
  40. Lehman, M. T., & Tompkins, C. A. (1998). Reliability and validity of and auditory working memory measure: Data from elderly and right-hemisphere damaged adults. Aphasiology, 12, 771–785. doi:10.1080/02687039808249572.CrossRefGoogle Scholar
  41. Logie, R. H. (1995). Visuo-spatial working memory. Aberdeen: Lawrence Erlbaum Associates.Google Scholar
  42. Logie, R. H., & Marchetti, C. (1991). Visuo-spatial working memory: Visual, spatial or central executive? In R. H. Logie & M. Denis (Eds.), Mental images in human cognition (pp. 105–115). Amsterdam: North-Holland Press.CrossRefGoogle Scholar
  43. Logie, R. H., & Pearson, D. G. (1997). The inner eye and the inner scribe of visuo-spatial working memory: Evidence from developmental fractionation. European Journal of Cognitive Psychology, 9, 241–257. doi:10.1080/713752559.CrossRefGoogle Scholar
  44. Lusk, D. L., Evans, A. D., Jeffrey, T. R., Palmer, K. R., Wikstrom, C. S., & Doolittle, P. F. (2009). Multimedia learning and individual differences: Mediating the effects of working memory capacity with segmentation. British Journal of Developmental Psychology, 40(4), 636–651. doi:10.1111/j.1467-8535.2008.00848.x.Google Scholar
  45. MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7, 19–40. doi:10.1037//1082-989X.7.1.19.CrossRefGoogle Scholar
  46. Mayer, R. E. (2005). Cognitive Theory of Multimedia Learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31–48). New York: Cambridge University Press.Google Scholar
  47. Mayer, R. E. (2009). Multimedia learning (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  48. McConnell, J., & Quinn, J. G. (2000). Interference in visual working memory. The Quarterly Journal of Experimental Psychology, 53, 53–67. doi:10.1080/027249800390664.CrossRefGoogle Scholar
  49. Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin, 27(3), 272–277.Google Scholar
  50. Miyake, A., & Shah, P. (1999). Models of working memory. Mechanisms of active maintenance and executive control. Cambridge: Cambridge University Press.Google Scholar
  51. Miyake, A., Emerson, M. J., Padilla, F., & Ahn, J. (2004). Inner speech as a retrieval aid for task goals: The effects of cue type and articulatory suppression in the random task cuing paradigm. Acta Psychologica, 115, 123–142. doi:10.1016/j.actpsy.2003.12.004.CrossRefGoogle Scholar
  52. Murray, D. J. (1967). The role of speech responses in short-term memory. Canadian Journal of Psychology, 21, 263–276. doi:10.1037/h0082978.CrossRefGoogle Scholar
  53. Nam, C. S., & Pujari, A. (2005). The role of working memory in multimedia learning. In Proceedings of the 11th International Conference on Human-Computer Interaction (HCII ‘05). Las Vegas: Mira Digital Publishing. CD-ROMGoogle Scholar
  54. Norman, D., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. Davidson, G. Schwartz, & D. Shapiro (Eds.), Consciousness and self regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York: Plenum.Google Scholar
  55. Osaka, N., Logie, R. H., & D’Esposito, M. (2007). The cognitive neuroscience of working memory. Oxford: Oxford University Press.Google Scholar
  56. Pazzaglia, F., Toso, C., & Cacciamani, S. (2008). The specific involvement of verbal and visuospatial working memory in hypermedia learning. British Journal of Educational Technology, 39(1), 110–124.Google Scholar
  57. Pearson, D. G. (2006). The episodic buffer. Implications and connections with visuo- spatial research. In T. Vecchi & G. Bottini (Eds.), Imagery and spatial cognition (pp. 139–153). Amsterdam: John Benjamins.Google Scholar
  58. Quinn, J. G., & McConnell, J. (1996). Irrelevant pictures in visual working memory. The Quarterly Journal of Experimental Psychology, 49, 200–215. doi:10.1080/027249896392865.CrossRefGoogle Scholar
  59. Rummer, R., Schweppe, J., Fürstenberg, A., Seufert, T., & Brünken, R. (2010). Working memory interference during processing texts and pictures: Implications for the explanation of the modality effect. Applied Cognitive Psychology, 24, 164–176. doi:10.1002/acp.1546.CrossRefGoogle Scholar
  60. Rummer, R., Schweppe, J., Fürstenberg, A., Scheiter, K., & Zindler, A. (2011). The perceptual basis of the modality effect in multimedia learning. Journal of Experimental Psychology: Applied (in press).Google Scholar
  61. Salthouse, T. A., & Pink, J. E. (2008). Why is working memory related to fluid intelligence? Psychonomic Bulletin & Review, 15, 364–371. doi:10.3758/PBR.15.2.364.CrossRefGoogle Scholar
  62. Sanchez, C. A., & Wiley, J. (2006). An examination of the seductive details effect in terms of working memory capacity. Memory & Cognition, 34, 344–355.CrossRefGoogle Scholar
  63. Schmidt-Weigand, F., & Scheiter, K. (2011). The role of spatial descriptions in learning from multimedia. Computers in Human Behavior, 27, 22–28. doi:10.1016/j.chb.2010.05.007.CrossRefGoogle Scholar
  64. Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). Explaining the modality and contiguity effects: New insights from investigating students’ viewing behavior. Applied Cognitive Psychology, 24, 226–237. doi:10.1002/acp.1554.CrossRefGoogle Scholar
  65. Seufert, T., Schütze, M., & Brünken, R. (2009). Memory characteristics and modality in multimedia learning: An aptitude-treatment-interaction study. Learning and Instruction, 19, 28–42. doi:10.1016/j.learninstruc.2008.01.002.CrossRefGoogle Scholar
  66. Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach. Journal of Experimental Psychology: General, 125, 4–27. doi:10.1037/0096-3445.125.1.4.CrossRefGoogle Scholar
  67. Smith, E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33, 5–42. doi:10.1006/cogp.1997.0658.CrossRefGoogle Scholar
  68. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661. doi:10.1126/science.283.5408.1657.CrossRefGoogle Scholar
  69. Spinnler, H., & Tognoni, G. (1987). Italian standardization and classification of neuropsychological tests. Italian Journal of Neurological Science, 6, 1–120.Google Scholar
  70. Spreen, O., & Strauss, E. (1998). A Compendium of Neuropsychological Tests. New York: Oxford University Press.Google Scholar
  71. Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 19–30). New York: Cambridge University Press.Google Scholar
  72. Sweller, J., van Merriëboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–285. doi:10.1023/A:1022193728205.CrossRefGoogle Scholar
  73. Tardieu, H., & Gyselinck, V. (2003). Working memory constraints in the integration and comprehension of information in a multimedia context. In H. van Oostendorp (Ed.), Cognition in a Digital World (pp. 3–24). London: Lawrence Erlbaum Associates.Google Scholar
  74. Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127–154. doi:10.1016/0749-596X(89)90040-5.CrossRefGoogle Scholar
  75. Vandierendonck, A., Kemps, E., Fastame, M. C., & Szmalec, A. (2004). Working memory components of the Corsi blocks task. British Journal of Psychology, 95, 57–79. doi:10.1348/000712604322779460.CrossRefGoogle Scholar
  76. Waters, G. S., & Caplan, D. (1996). The measurement of verbal working memory capacity and its relation to reading comprehension. The Quarterly Journal of Experimental Psychology, 49A, 51–79. doi:10.1080/027249896392801.Google Scholar
  77. Wechsler, D. (1958). The measurement and appraisal of adult intelligence. Baltimore: Williams & Wilkins.CrossRefGoogle Scholar
  78. Wechsler, D. (1997). WAIS-III and working memoryS-III: Technical manual. San Antonio: Harcourt Brace & Company.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Anne Schüler
    • 1
  • Katharina Scheiter
    • 1
  • Erlijn van Genuchten
    • 1
  1. 1.Knowledge Media Research CenterTübingenGermany

Personalised recommendations