Advertisement

Educational Psychology Review

, Volume 21, Issue 1, pp 21–30 | Cite as

The Mirror Neuron System and Observational Learning: Implications for the Effectiveness of Dynamic Visualizations

  • Tamara van Gog
  • Fred Paas
  • Nadine Marcus
  • Paul Ayres
  • John Sweller
Review Article

Abstract

Learning by observing and imitating others has long been recognized as constituting a powerful learning strategy for humans. Recent findings from neuroscience research, more specifically on the mirror neuron system, begin to provide insight into the neural bases of learning by observation and imitation. These findings are discussed here, along with their potential consequences for the design of instruction, focusing in particular on the effectiveness of dynamic vs. static visualizations.

Keywords

Mirror neuron system Observational learning Cognitive load 

References

  1. Arguel, A., & Jamet, E. (2008). Using video and static pictures to improve learning of procedural contents. Computers in Human Behavior, in press.Google Scholar
  2. Ayres, P., Marcus, N., Chan, C., & Qian, N. (2008). Learning hand manipulative tasks: When instructional animations are superior to equivalent static representations. Computers in Human Behavior, in press.Google Scholar
  3. Ayres, P., & Paas, F. (Eds.). (2007a). A cognitive load approach to the learning effectiveness of instructional animation. Applied Cognitive Psychology, 21(6), special issue.Google Scholar
  4. Ayres, P., & Paas, F. (2007b). Making instructional animations more effective: A cognitive load approach. Applied Cognitive Psychology, 21, 695–700. doi: 10.1002/acp.1343.CrossRefGoogle Scholar
  5. Ayres, P., & Sweller, J. (2005). The split-attention principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 135–146). New York: Cambridge University Press.Google Scholar
  6. Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  7. Barouillet, P., & Camos, V. (2007). The time-based resource-sharing model of working memory. In N. Osaka, R. H. Logie, & M. D’Esposito (Eds.), The cognitive neuroscience of working memory (pp. 59–80). Oxford: Oxford University Press.Google Scholar
  8. Braaksma, M., Rijlaarsdam, G. C. W., Van den Bergh, H., & Van Hout-Wolters, B. A. M. (2004). Observational learning and its effects on the orchestration of the writing process. Cognition and Instruction, 22, 1–36. doi: 10.1207/s1532690Xci2201_1.CrossRefGoogle Scholar
  9. Buccino, G., Vogt, S., Ritzl, A., Fink, G., Zilles, K., Freund, H., et al. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42, 323–334. doi: 10.1016/S0896-6273(04)00181-3.PubMedCrossRefGoogle Scholar
  10. Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145–182.CrossRefGoogle Scholar
  11. Chi, M. T. H., Glaser, R., & Farr, M. (Eds.).(1988). The nature of expertise. Hillsdale, NJ: Erlbaum.Google Scholar
  12. Cooper, G., & Sweller, J. (1987). The effects of schema acquisition and rule automation on mathematical problem-solving transfer. Journal of Educational Psychology, 79, 347–362. doi: 10.1037/0022-0663.79.4.347.CrossRefGoogle Scholar
  13. Cooper, G., Tindall-Ford, S., Chandler, P., & Sweller, J. (2001). Learning by imagining. Journal of Experimental Psychology. Applied, 7, 68–82. doi: 10.1037/1076-898X.7.1.68.PubMedCrossRefGoogle Scholar
  14. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. The Behavioral and Brain Sciences, 24, 87–114. doi: 10.1017/S0140525X01003922.PubMedCrossRefGoogle Scholar
  15. Craighero, L., Bello, A., Fadiga, L., & Rizzolatti, G. (2002). Hand action preparation influences the responses to hand pictures. Neuropsychologia, 40, 492–502. doi: 10.1016/S0028-3932(01)00134-8.PubMedCrossRefGoogle Scholar
  16. De Jong, T., Van Gog, T., Jenks, K., Manlove, S., Van Hell, J., Jolles, J., et al. (2008). Explorations in learning and the brain: On the potential of cognitive neuroscience for education. in press. Berlin: Springer. Also available (downloaded July 28, 2008) from http://www.nwo.nl/files.nsf/pages/NWOA_7GFD3Y/$file/Explorations_in_Learning_and_the_Brain.pdf.
  17. Detterman, D. K., & Sternberg, R. J. (Eds.).(1993). Transfer on trial: Intelligence, cognition, and instruction. Norwood, NJ: Ablex.Google Scholar
  18. Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176–180. doi: 10.1007/BF00230027.CrossRefGoogle Scholar
  19. Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Evidence for maximal adaptation to task constraints. Annual Review of Psychology, 47, 273–305. doi: 10.1146/annurev.psych.47.1.273.PubMedCrossRefGoogle Scholar
  20. Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73, 2608–2611.PubMedGoogle Scholar
  21. Fischer, S., Lowe, R. K., & Schwan, S. (2008). Effects of presentation speed of a dynamic visualization on the understanding of a mechanical system. Applied Cognitive Psychology, in press.Google Scholar
  22. Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C. (2007). The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. NeuroImage, 35, 1674–1684. doi: 10.1016/j.neuroimage.2007.02.003.PubMedCrossRefGoogle Scholar
  23. Geary, D. (2007). Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology. In J. S. Carlson, & J. R. Levin (Eds.), Psychological perspectives on contemporary educational issues (pp. 1–99). Greenwich, CT: Information Age.Google Scholar
  24. Gergely, G., Bekkering, H., & Király, I. (2002). Rational imitation in preverbal infants: Babies may opt for a simpler way to turn on a light after watching an adult do it. Nature, 415, 755.PubMedGoogle Scholar
  25. Goswami, U. (2004). Neuroscience and education. The British Journal of Educational Psychology, 74, 1–14. doi: 10.1348/000709904322848798.PubMedCrossRefGoogle Scholar
  26. Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12, 1–19. doi: 10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V.PubMedCrossRefGoogle Scholar
  27. Hegarty, M., Kriz, S., & Cate, C. (2003). The roles of mental animations and external animations in understanding mechanical systems. Cognition and Instruction, 21, 325–360. doi: 10.1207/s1532690xci2104_1.CrossRefGoogle Scholar
  28. Höffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17, 722–738. doi: 10.1016/j.learninstruc.2007.09.013.CrossRefGoogle Scholar
  29. Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. The Behavioral and Brain Sciences, 31, 1–58. doi: 10.1017/S0140525X07003123.PubMedCrossRefGoogle Scholar
  30. Iacoboni, M., Woods, R., Brass, M., Bekkering, H., Mazziotta, J., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 2526–2528. doi: 10.1126/science.286.5449.2526.PubMedCrossRefGoogle Scholar
  31. Jeon, U. H., & Branson, R. K. (1981). Performance and simulated performance test results as a function of instruction by still and motion visuals. Journal of Educational Technology Systems, 10, 33–44.Google Scholar
  32. Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–32. doi: 10.1207/S15326985EP3801_4.CrossRefGoogle Scholar
  33. Katzir, T., & Paré-Blagoev, J. (2006). Applying cognitive neuroscience research to education: The case of literacy. Educational Psychologist, 41, 53–74. doi: 10.1207/s15326985ep4101_6.CrossRefGoogle Scholar
  34. Keysers, C., & Gazzola, V. (2007). Integrating simulation and theory of mind: From self to social cognition. Trends in Cognitive Sciences, 11, 194–196. doi: 10.1016/j.tics.2007.02.002.PubMedCrossRefGoogle Scholar
  35. Kitsantas, A., Zimmerman, B. J., & Cleary, T. (2000). The role of observation and emulation in the development of athletic self-regulation. Journal of Educational Psychology, 92, 811–817. doi: 10.1037/0022-0663.92.4.811.CrossRefGoogle Scholar
  36. Leahy, W., & Sweller, J. (2005). Interactions among the imagination, expertise reversal and element interactivity effects. Journal of Experimental Psychology. Applied, 11, 266–276. doi: 10.1037/1076-898X.11.4.266.PubMedCrossRefGoogle Scholar
  37. Leahy, W., & Sweller, J. (2008). The imagination effect increases with an increased intrinsic cognitive load. Applied Cognitive Psychology, 22, 273–283. doi: 10.1002/acp.1373.CrossRefGoogle Scholar
  38. Lowe, R. K., & Schnotz, W. (Eds.). (2008). Learning with animation: Research implications for design. New York: Cambridge University Press.Google Scholar
  39. Mayer, R. E. (Ed.).(2005). The Cambridge handbook of multimedia learning. New York: Cambridge University Press.Google Scholar
  40. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity to process information. Psychological Review, 63, 81–97. doi: 10.1037/h0043158.PubMedCrossRefGoogle Scholar
  41. OECD. (2007). Understanding the brain: The birth of a learning science. Paris: Office of Economic Cooperation and Development.Google Scholar
  42. Osaka, N., Logie, R. H., & D’Esposito, M. (Eds.).(2007). The cognitive neuroscience of working memory. Oxford: Oxford University Press.Google Scholar
  43. Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive load approach. Journal of Educational Psychology, 84, 429–434. doi: 10.1037/0022-0663.84.4.429.CrossRefGoogle Scholar
  44. Paas, F., & Van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive load approach. Journal of Educational Psychology, 86, 122–133. doi: 10.1037/0022-0663.86.1.122.CrossRefGoogle Scholar
  45. Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38, 1–4. doi: 10.1207/S15326985EP3801_1.CrossRefGoogle Scholar
  46. Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32, 1–8. doi: 10.1023/B:TRUC.0000021806.17516.d0.CrossRefGoogle Scholar
  47. Park, O., & Hopkins, R. (1993). Instructional conditions for using dynamic visual displays: A review. Instructional Science, 21, 427–449. doi: 10.1007/BF00118557.CrossRefGoogle Scholar
  48. Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21, 1–29.CrossRefGoogle Scholar
  49. Rizzolatti, G. (2005). The mirror neuron system and its function in humans. Anatomy and Embryology, 210, 419–421. doi: 10.1007/s00429-005-0039-z.PubMedCrossRefGoogle Scholar
  50. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. doi: 10.1146/annurev.neuro.27.070203.144230.PubMedCrossRefGoogle Scholar
  51. Schnotz, W., & Lowe, R. K. (Eds.). (2003). External and internal representations in multimedia learning. Learning and Instruction, 13(2), special issue.Google Scholar
  52. Stern, E., Grabner, R., & Schumacher, R. (2006). Educational research and neurosciences - Expectations, evidence, research prospects. Berlin: Federal Ministry of Education and Research.Google Scholar
  53. Sweller, J. (1988). Cognitive load during problem-solving: Effects on learning. Cognitive Science, 12, 257–285.CrossRefGoogle Scholar
  54. Sweller, J. (2004). Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instructional Science, 32, 9–31. doi: 10.1023/B:TRUC.0000021808.72598.4d.CrossRefGoogle Scholar
  55. Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 2, 59–89. doi: 10.1207/s1532690xci0201_3.CrossRefGoogle Scholar
  56. Sweller, J., & Sweller, S. (2006). Natural information processing systems. Ecological Psychology, 4, 434–458.Google Scholar
  57. Sweller, J., Van Merriënboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–295. doi: 10.1023/A:1022193728205.CrossRefGoogle Scholar
  58. Tai, Y., Scherfler, C., Brooks, D., Sawamoto, N., & Castiello, U. (2004). The human premotor cortex is “mirror” only for biological actions. Current Biology, 14, 117–120. doi: 10.1016/j.cub.2004.01.005.PubMedCrossRefGoogle Scholar
  59. Tettamanti, M., Buccino, G., Saccuman, M. C., Gallese, V., Danna, M., Scifo, P., et al. (2005). Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience, 17, 273–281. doi: 10.1162/0898929053124965.PubMedCrossRefGoogle Scholar
  60. Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: can it facilitate? International Journal of Human–Computer Studies, 57, 247–262. doi: 10.1006/ijhc.2002.1017.CrossRefGoogle Scholar
  61. Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2004). Process-oriented worked examples: Improving transfer performance through enhanced understanding. Instructional Science, 32, 83–98. doi: 10.1023/B:TRUC.0000021810.70784.b0.CrossRefGoogle Scholar
  62. Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2006). Effects of process-oriented worked examples on troubleshooting transfer performance. Learning and Instruction, 16, 154–164. doi: 10.1016/j.learninstruc.2006.02.003.CrossRefGoogle Scholar
  63. Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2008). Effects of studying sequences of process-oriented and product-oriented worked examples on troubleshooting transfer efficiency. Learning and Instruction, 18, 211–222. doi: 10.1016/j.learninstruc.2007.03.003.CrossRefGoogle Scholar
  64. Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17, 147–177. doi: 10.1007/s10648-005-3951-0.CrossRefGoogle Scholar
  65. Vogt, S., Taylor, P., & Hopkins, B. (2003). Visuomotor priming by pictures of hand postures: perspective matters. Neuropsychologia, 41, 941–951. doi: 10.1016/S0028-3932(02)00319-6.PubMedCrossRefGoogle Scholar
  66. Wetzel, C. D., Radtke, P. H., & Stern, H. W. (1994). Instructional effectiveness of video media. Hillsdale, NJ: Erlbaum.Google Scholar
  67. Wong, A., Marcus, N., Ayres, P., Smith, L., Cooper, G.A., Paas, F., et al. (2008). Instructional animations can be superior to statics when learning human motor skills. Computers in Human Behavior, in press.Google Scholar
  68. Wouters, P., Paas, F., & Van Merriënboer, J. J. G. (2008). How to optimize learning from animated models? A review of guidelines based on cognitive load. Review of Educational Research, 78, 645–675.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tamara van Gog
    • 1
    • 2
  • Fred Paas
    • 1
    • 2
    • 3
  • Nadine Marcus
    • 4
  • Paul Ayres
    • 5
  • John Sweller
    • 5
  1. 1.Centre for Learning Sciences and Technologies (CELSTEC)Open University of The NetherlandsHeerlenThe Netherlands
  2. 2.Netherlands Laboratory of Lifelong Learning (NeLLL)Open University of The NetherlandsHeerlenThe Netherlands
  3. 3.Institute of PsychologyErasmus University RotterdamRotterdamThe Netherlands
  4. 4.School of Computer Science and EngineeringUniversity of New South WalesSydneyAustralia
  5. 5.School of EducationUniversity of New South WalesSydneyAustralia

Personalised recommendations