Advertisement

Compatibility of pesticides used in strawberry crops with predatory mites Stratiolaelaps scimitus (Womersley) and Cosmolaelaps brevistilis (Karg)

Abstract

Stratiolaelaps scimitus (Womersley) and Cosmolaelaps brevistilis (Karg) (Acari: Laelapidae) are predatory mites of soil-inhabiting pests, mainly small insects. Fungus gnats fly species are found in greenhouse strawberry production and may be controlled with predatory mites, being important to know their compatibility with the pesticides used in strawberry crops. In this study, the compatibility of seven commercial pesticides used in strawberry cultivation with the predatory mites S. scimitus and C. brevistilis was assessed in laboratory conditions. Survival and oviposition rates were evaluated between 0.5 and 120 h after treatment (HAT). The results demonstrate that lambda-cyhalothrin treatment resulted in the lowest survival rate for both mites in the first evaluations, being moderately harmful, while spinetoran was slightly harmful to C. brevistilis. On the other hand, abamectin, azadirachtin, azoxystrobin + difenoconazole, iprodione and thiamethoxam were harmless for both mites and, oviposition rate was significantly different only at 72 and 120 HAT for S. scimitus and C. brevistilis respectively. These results may be used to develop guidelines for the adoption of selective pesticides in integrated pest management programs that conserves predatory mites.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2

References

  1. Abbatielo MJ (1965) Culture chamber for rearing soil mites. Turtox News 43:162–165

  2. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

  3. Ahmad N, Karim K, Masoud A, Fateme A (2009) Selectivity of three miticides to spider mite predator, Phytoseius plumifer (Acari: Phytoseiidae) under laboratory conditions. Agric Sci China 8:326–331

  4. Arnó J, Gabarra R (2011) Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). J Pest Sci 84:513–520

  5. Bernardi D, Botton M, Cunha US, da, Bernardi O, Malausa T, Garcia MS, Nava DE (2012) Effects of azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and its compatibility with predatory mites (Acari: Phytoseiidae) on strawberry. Pest Manag Sci 69:75–80

  6. Biondi A, Mommaerts V, Smagghe G, Viñuela E, Zappalà L, Desneux N (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812

  7. Brasil (2015) Instrução Normativa Conjunta nº 1, de 06 de fevereiro de 2015. Especificações de referência de produtos fitossanitários com uso aprovado para a agricultura orgânica. Diário Oficial da União, 06 de fevereiro de 2015. http://www.agricultura.gov.br/assuntos/sustentabilidade/organicos/produtos-fitossanitarios/arquivos-especificacao-de-referencia/in-conjunta-sda-sdc-no-1-de-06-de-fevereiro-de-2015.pdf. Accessed 6 Apr 2017

  8. Brasil (2018) Ministério da Agricultura, Pecuária e Abastecimento. Agrofit—Sistema de agrotóxicos fitossanitários. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 13 June 2018

  9. Brito HM, Gondim Jr MGC, Oliveira JV, de, Câmara CAGda (2006) Toxicidade de formulações de nim (Azadirachta indica A. Juss.) ao ácaro-rajado e a Euseius alatus De Leon e Phytoseiulus macropilis (Banks) (Acari: Phytoseiidae). Neotrop Entomol 35:500–505

  10. Brittain C, Potts SG (2011) The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic Appl Ecol 12:321–331

  11. Broadley A, Kauschke E, Mohrig W (2018) Black fungus gnats (Diptera: Sciaridae) found in association with cultivated plants and mushrooms in Australia, with notes on cosmopolitan pest species and biosecurity interceptions. Zootaxa 4415:201–242

  12. Bueno ADF, Carvalho GA, Santos ACdos, Sosa-Gomèz DR, Silva DMda (2017) Pesticide selectivity to natural enemies: challenges and constraints for research and field recommendation. Cienc Rural 47:20160829

  13. Castilho RC, Moraes GJ, de, Silva ES, Freire RAP, Eira FCda (2009) The predatory mite Stratiolaelaps scimitus as a control agent of the fungus gnat Bradysia matogrossensis in commercial production of the mushroom Agaricus bisporus. Int J Pest Manag 55:181–185

  14. Castilho RV, Grützmacher AD, Nava DE, Zotti MJ, Siqueira PRB, Spagnol D (2013) Selectivity of pesticides used in peach orchards on the larval stage of the predator Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Semina: Ciênc Agrár 34:3585–3596

  15. Cecatto AP, Calvete EO, Nienow AA, Costa RC, da, Mendonça HFC, Pazzinato AC (2013) Culture systems in the production and quality of strawberry cultivars. Acta Sci Agron 35:471–478

  16. Chen C, Shi X, Desneux N, Han P, Gao X (2017) Detection of insecticide resistance in Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae) in China. Ecotoxicology 26:868–875

  17. Cloyd RA (2008) Management of fungus gnats (Bradysia spp.) in greenhouse and nurseries. Floricul Ornam Biotechnol 2:84–89

  18. Cloyd RA, Zaborski ER (2004) Fungus gnats, Bradysia spp. (Diptera: Sciaridae), and other arthropods in commercial bagged soilless growing media and rooted plant plugs. J Econ Entomol 97:503–510

  19. Ditillo JL, Kennedy GG, Walgenbach JF (2016) Effects of insecticides and fungicides commonly used in tomato production on Phytoseiulus persimilis (Acari: Phtyoseiidae). J Econ Entomol 109:2298–2308

  20. Duarte A, da F, Cunha US, da, Moraes GJde (2018) Suitability of edaphic arthropods as prey for Proctolaelaps bickleyi and Cosmolaelaps brevistilis (Acari: Mesostigmata: Melicharidae, Laelapidae) under laboratory conditions. Exp Appl Acarol 74:1–8

  21. Galm U, Sparks TC (2016) Natural product derived insecticides: discovery and development of spinetoram. J Ind Microbiol Biotechnol 43:185–193

  22. Hall FR, Thacker JRM (1993) Laboratory studies on effects of three permethrin formulations on mortality, fecundity, feeding, and repellency of the two-spotted spider mite (Acari: Tetranychidae). Hortic. Horticult Entomol 86:537–543

  23. Jansen JP (1999) Effects of wheat foliar fungicides on the aphid endoparasitoid Aphidius rhopalosiphi DeStefani-Perez (Hym., Aphididae) on glass plates and on plants. J Appl Entomol 123:217–224

  24. Kirst HA (2010) The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot 63:101–111

  25. Lefebvre M, Noubar JB, Thistlewood HMA, Mauffette Y, Racette G (2011) A laboratory assessment of the toxic attributes of six ‘reduced risk insecticides’ on Galendromus occidentalis (Acari: Phytoseiidae). Chemosphere 84:25–30

  26. Lima DB, Melo JWS, Gondim Jr. MGC, Guedes RNC, Oliveira JEM (2016) Population-level effects of abamectin, azadirachtin and fenpyroximate on the predatory mite Neoseiulus baraki. Exp Appl Acarol 70:165–177

  27. Madbouni MAZ, Samih MA, Qureshi JA, Biondi A, Namvar P (2017) Compatibility of insecticides and fungicides with the zoophytophagous mirid predator Nesidiocoris tenuis. Plos ONE 12:e0187439

  28. Magano DA, Grutzmacher AD, De Armas FS, Paulus LF, Panozzo LE, Mentnech KJ, Zotti M (2015) Evaluating the selectivity of registered fungicides for soybean against Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae). Afr J Agric Res 10:3825–3831

  29. Paranjpe AV, Cantliffe DJ, Lamb EM, Stoffella PJ, Powell C (2003) Winter strawberry production in greenhouses using soilless substrates: an alternative to methyl bromide soil fumigation. Proc Fla State Hortic Soc 116:98–105

  30. Pazini JB, Padilha AC, Cagliari D, Bueno FA, Rakes M, Zotti MJ, Martins JF, da S, Grutzmacher AD (2019) Differential impacts of pesticides on Euschistus heros (Hem.: Pentatomidae) and its parasitoid Telenomus podisi (Hym.: Platygastridae). Sci Rep 9:6544

  31. Pazini JB, Pasini RA, Rakes M, De Arms F, Seidel EJ, Martins JF, da S, Grutzmacher AD (2017a) Toxicity of pesticide tank mixtures from rice crops against Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Neotrop Entomol 46:461–470

  32. Pazini JB, Pasini RA, Seidel EJ, Rakes M, Martins JF, da S, Grutzmacher AD (2017b) Side-effects of pesticides used in irrigated rice areas on Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Ecotoxicology 26:782–791

  33. Ponce A, dos R, Bastiani MID, Minim VP, Vanetti MCD (2009) Características físico-químicas e microbiológicas de morango minimamente processado. Ciência e Tecnol Aliment 30:113–118

  34. R Development Core Team (2018) R—A language and environment for statistical computing. rev.3.2.0. R Foundation for Statistical Computing, Vienna, Austria, http://r-project.org. Accessed 10 Aug 2018

  35. Radin B, VRDS Wolff, Lisboa BB, Witter S, JRP Silveira (2009) Bradysia sp. em morangueiro. Ciência Rural 39:547–550

  36. Reis PR, Sousa ÉO (2001) Seletividade de chlorfenapyr e fenbutatin-oxide sobre duas espécies de ácaros predadores (Acari: Phytoseiidae) em citros. Rev Bras Frutic 23:584–588

  37. Schlesener DCH, Duarte A, da F, Guerrero MFC, Cunha US, da, Nava DE (2013) Efeitos do nim sobre Tetranychus urticae Koch (Acari: Tetranychidae) e os predadores Phytoseiulus macropilis (Banks) e Neoseiulus californicus (Mcgregor) (Acari: Phytoseiidae). Rev Bras Frutic 35:59–66

  38. Schmidt-Jeffris RA, Beers EH (2018) Potential impacts of orchard pesticides on Tetranychus urticae: a predator-prey perspective. Crop Prot 103:56–64

  39. da Silva MZ, de Oliveira CAL(2006) Seletividade de alguns agrotóxicos em uso na citricultura ao ácaro predador Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) Rev Bras Frutic 28:205–208

  40. Sparks TC, Thompson GD, Kirst HA, Hertlein MB, Larson LL, Worden TV, Thibault ST (1998) Biological activity of the spinosyns, new fermentation derived insect control agents, on tobacco budworm (Lepidoptera: Noctuidae) larvae. J Econ Entomol 91:1277–1283

  41. Stecca C, do S, Silva DM, da, Bueno ADF, Pasini A, Denez MD, Andrade K (2017) Selectivity Insectic Use soybean crop Predat Podisus nigrispinus (Hemiptera: Pentatomidae) Semin 38:3469–3480

  42. Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Toxicol 45:247–268

  43. Vidal C, Kreiter S (1995) Resistance to a range of insecticides in the predaceous mite Typhlodromus pyri (Acari: Phytoseiidae): inheritance and physiological mechanisms. J Econ Entomol 88:1097–1105

  44. WHO (2009) The WHO recommended classification of pesticides by hazard and guidelines to classification, pp. 1–81. http://www.who.int/ipcs/publications/pesticides_hazard_2009.pdf. Accessed 23 Dec 2018

  45. Zanardi OZ, Bordini GP, Franco AA, Jacob CRO, Yamamoto PT (2017) Sublethal effects of pyrethroid and neonicotinoid insecticides on Iphiseiodes zuluagai Denmark and Muma (Mesostigmata: Phytoseiidae). Ecotoxicology 26:1188–1198

  46. Zantedeschi R, Grützmacher AD, Pazini J, de B, Bueno FA, Machado LL (2018) Selectivity of pesticides registered for soybean crop on Telenomus podisi and Trissolcus basalis. Pesqui Agropecu Trop 48:52–58

Download references

Acknowledgements

We are grateful to Anderson Dionei Grutzmacher, head of Laboratory of Integrated Pest Management (LabMIP), who kindly provided the pesticides used in this study.

Funding

Funding was provided by the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES-Grant Number 88882.182253/2018-01 and 88882.306693/2018-01 for first and third author respectively) and the National Council for Scientific and Technological Development (CNPq-Grant Number 140328/2016-5 for second author).

Author information

Correspondence to Adriane da F. Duarte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duarte, A.d.F., de Bastos Pazini, J., Duarte, J.L.P. et al. Compatibility of pesticides used in strawberry crops with predatory mites Stratiolaelaps scimitus (Womersley) and Cosmolaelaps brevistilis (Karg). Ecotoxicology (2020). https://doi.org/10.1007/s10646-020-02164-w

Download citation

Keywords

  • Soil predators
  • Laelapidae
  • Bradysia sp.
  • Integrated pest management