Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A mixture of fipronil and fungicides induces alterations on behavioral and oxidative stress parameters in zebrafish

Abstract

Pesticide commercial mixtures, including the insecticide fipronil and the fungicides pyraclostrobin and methyl-thiophanate, have been used in concomitant pest control, facilitating agricultural management. Their widespread use can lead to soil and water contamination and potentially induce damages in the ecosystem, producing toxic effects in non-target organisms. Despite their toxicological potential, their effects on behavioral and biochemical parameters are not well understood. Here we investigated the effects of the mixture of fipronil and fungicides (MFF) pyraclostrobin and methyl- thiophanate on behavioral and biochemical parameters of oxidative stress in adult zebrafish. Animals exposed to the highest MFF tested concentration showed a decrease in the total distance traveled and in the number of crossings in the different zones of the tank. Furthermore, animals exposed to highest MFF tested concentration spent more time in water surface. In addition, our data showed that the exposure to this preparation promoted a decrease in non-protein thiol content as well as in catalase activity. Finally, pesticide exposure induced an increase in the superoxide dismutase/catalase ratio. Our results indicate that alterations in behavioral and oxidative parameters are involved in MFF toxicity in zebrafish. The antioxidant mechanisms analyzed were altered in concentrations that did not affect zebrafish behavior. Therefore, the assessment of oxidative stress parameters in zebrafish brains could be very useful to detect the early effects of environmental exposure to the MFF.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

  2. Altenhofen S, Nabinger DD, Bitencourt PER, Bonan CD (2019) Dichlorvos alters morphology and behavior in zebrafish (Danio rerio) larvae. Environ Pollut 245:1117–1123. https://doi.org/10.1016/j.envpol.2018.11.095

  3. Alves PRL, Cardoso EJBN, Martines AM, Sousa JP, Pasini A (2014) Seed dressing pesticides on springtails in two ecotoxicological laboratory tests. Ecotoxicol Environ Saf 105:65–71. https://doi.org/10.1016/j.ecoenv.2014.04.010

  4. Ardeshir RA, Zolgharnein H, Movahedinia A et al. (2017) Comparison of waterborne and intraperitoneal exposure to fipronil in the Caspian white fish (Rutilus frisii) on acute toxicity and histopathology. Toxicol Rep. 4:348–357. https://doi.org/10.1016/j.toxrep.2017.06.010

  5. Badgujar PC, Pawar NN, Chandratre GA, Telang AG, Sharma AK (2015) Fipronil induced oxidative stress in kidney and brain of mice: protective effect of vitamin E and vitamin C. Pestic Biochem Physiol 118:10–18. https://doi.org/10.1016/j.pestbp.2014.10.013

  6. Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B (2002) The strobilurin fungicides. Pest Manag Sci 58(7):649–662. https://doi.org/10.1002/ps.520

  7. Bedient PB, Horsak RD, Schlenk D, Hovinga RM, Pierson JD (2005) Environmental impact of fipronil to the louisiana crawfish industry. Environ Forensics 6(3):289–299

  8. Beggel S, Werner I, Connon RE, Geist JP (2012) Impacts of the phenylpyrazole insecticide fipronil on larval fish: time-series gene transcription responses in fathead minnow (Pimephales promelas) following short-term exposure. Sci Total Environ 426:160–165. https://doi.org/10.1016/j.scitotenv.2012.04.005

  9. Chasteen ND, Harrison PM (1999) Mineralization in ferritin: an efficient means of iron storage. J Struct Biol 126:182–194

  10. Chen L, Li X, Zhang J, Fang J, Huang Y, Wang P, Ma J (2015) Production of hydroxyl radical via the activation of hydrogen peroxide by hydroxylamine. Environ Sci Technol 49(17):10373–10379. https://doi.org/10.1021/acs.est.5b00483

  11. da Costa Chaulet F, de Alcantara Barcellos HH, Fior D, Pompermaier A, Koakoski G, da Rosa JGS, Fagundes M, Barcellos LJG (2019) Glyphosate- and fipronil- based agrochemicals and their mixtures change zebrafish behavior. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-019-00644-7

  12. Dehnert GK, Karasov WH, Wolman MA (2019) 2,4-Dichlorophenoxyacetic acid containing herbicide impairs essential visually guided behaviors of larval fish. Aquat Toxicol 209:1–12. https://doi.org/10.1016/j.aquatox.2019.01.015

  13. Domingues I, Oliveira R, Soares AM, Amorim MJ (2016) Effects of ivermectin on Danio rerio: a multiple endpoint approach: behavior, weight and subcellular markers. Ecotoxicology 25(3):491–499. https://doi.org/10.1007/s10646-015-1607-5

  14. El Hassani AK, Dacher M, Gauthier M, Armengaud C (2005) Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol Biochem Behav 82:30–39. https://doi.org/10.1016/j.pbb.2005.07.008

  15. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77. https://doi.org/10.1016/0003-9861(59)90090-6

  16. Feki A, Ben Saad H, Jaballi I, Magne C, Boudawara O, Zeghal KM, Hakim A, Ben Ali Y, Ben Amara I (2017) Methyl thiophanate-induced toxicity in liver and kidney of adult rats: a biochemical, molecular and histopathological approach. Cell Mol Biol 63(2):20–28. https://doi.org/10.14715/cmb/2017.63.2.4

  17. Fridovich I (1997) Superoxide anion radical (O2−.), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

  18. Gan J, Bondarenko S, Oki L, Haver D, Li JX (2012) Occurrence of fipronil and its biologically active derivatives in urban residential runoff. Environ Sci Technol 46(3):1489–1495

  19. Gill KK, Dumka VK (2013) Biochemical alterations induced by oral subchronic exposure to fipronil, fluoride and their combination in buffalo calves. Environ Toxicol Pharmacol 36(3):1113–1119. https://doi.org/10.1016/j.etap.2013.09.011

  20. Godinho C, Domingos J, Cunha G, Santos AT, Fernandes RM, Abreu D, Gonçalves N, Matthews H, Isaacs T, Duffen J, Al-Jawad A, Larsen F, Serrano A, Weber P, Thoms A, Sollinger S, Graessner H, Maetzler W, Ferreira JJ (2016) A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J Neuro Eng Rehabil 13:24. https://doi.org/10.1186/s12984-016-0136-7

  21. Gsell W, Conrad R, Hickethier M, Sofic E, Frölich L, Wichart I, Jellinger K, Moll G, Ransmayr G, Beckmann H (1995) Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J Neurochem 64(3):1216–1223

  22. Hainzl D, Cole LM, Casida JE (1998) Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chem Res Toxicol 11(12):1529–1535. https://doi.org/10.1021/tx980157t

  23. Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35(Pt 5):1147–1150. https://doi.org/10.1042/BST0351147

  24. Halliwell B, Gutteridge JMC (2015) Free Radicals in Biology and Medicine. 5th Edition, Oxford University Press, New York

  25. Ighodaro OM, Akinloye OA (2019) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med 54(4):287–293

  26. Ikeda T, Zhao X, Nagata K, Kono Y, Shono T, Yeh JZ, Narahashi T (2001) Fipronil modulation of gamma-aminobutyric acid(A) receptors in rat dorsal root ganglion neurons. J Pharm Exp Ther 296(3):914–921

  27. Jones DP, Carlson JL, Mody VC, Cai J, Lynn MJ, Sternberg P (2000) Redox state of glutathione in human plasma. Free Radic Biol Med 28(4):625–35. https://doi.org/10.1016/s0891-5849(99)00275-0

  28. Joshi J, Sharma S, Guruprasad KN (2014) Foliar application of pyraclostrobin fungicide enhances the growth, rhizobial-nodule formation and nitrogenase activity in soybean (var. JS-335) Pestic Biochem Physiol 114:61–66

  29. Li H, Cao F, Zhao F, Yang Y, Teng M, Wang C, Qiu L (2018) Developmental toxicity, oxidative stress and immunotoxicity induced by three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) in zebrafish embryos. Chemosphere 207:781–790. https://doi.org/10.1016/j.chemosphere.2018.05.146

  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

  31. Marcon M, Herrmann AP, Mocelin R et al. (2016) Prevention of unpredictable chronic stress-related phenomena in zebrafish exposed to bromazepam, fluoxetine and nortriptyline. Psychopharmacology 233:3815–3824. https://doi.org/10.1007/s00213-016-4408-5

  32. Menezes C, Leitemperger J, Murussi C, de Souza Viera M, Adaime MB, Zanella R, Loro VL (2016) Effect of diphenyl diselenide diet supplementation on oxidative stress biomarkers in two species of freshwater fish exposed to the insecticide fipronil. Fish Physiol Biochem 42(5):1357–1368. https://doi.org/10.1007/s10695-016-0223-5

  33. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

  34. Mocelin R, Herrmann AP, Marcon M et al. (2015) N-acetylcysteine prevents stress-induced anxiety behavior in zebrafish. Pharmacol Biochem Behav 139(Pt B):121–126. https://doi.org/10.1016/j.pbb.2015.08.006

  35. Monteiro DA, de Almeida JA, Rantin FT, Kalinin AL (2006) Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp Biochem Physiol Toxicol Pharmacol 143(2):141–149. https://doi.org/10.1016/j.cbpc.2006.01.004

  36. Nillos MG, Lin K, Gan J, Bondarenko S, Schlenk D (2009) Enantioselectivity in fipronil aquatic toxicity and degradation. Environ Toxicol Chem 28(9):1825–1833. https://doi.org/10.1897/08-658.1

  37. Nordberg J, Arnér ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31(11):1287–1312. https://doi.org/10.1016/S0891-5849(01)00724-9

  38. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

  39. Peveling R, Demba SA (2003) Toxicity and pathogenicity of metarhizium anisopliae var. acridum (Deuteromycotina, Hyphomycetes) and fipronil to the fringe-toed lizard Acanthodactylus dumerili (Squamata: Lacertidae). Environ Toxicol Chem 22:1437–1447. https://doi.org/10.1002/etc.5620220704

  40. Qian Y, Ji C, Yue S, Zhao M (2019) Exposure of low-dose fipronil enantioselectively induced anxiety-like behavior associated with DNA methylation changes in embryonic and larval zebrafish. Environ Pollut 249:362–371. https://doi.org/10.1016/j.envpol.2019.03.038

  41. Qian Y, Wang C, Wang J, Zhang X, Zhou Z, Zhao M, Lu C (2017) Fipronil-induced enantioselective developmental toxicity to zebrafish embryo-larvae involves changes in DNA methylation. Sci Rep. 7(1):2284. https://doi.org/10.1038/s41598-017-02255-5

  42. Qureshi IZ, Bibi A, Shahid S, Ghazanfar M (2016) Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinus carpio L.). Aquat Toxicol 179:103–114. https://doi.org/10.1016/j.aquatox.2016.08.012

  43. Romero A, Ramos E, Ares I, Castellano V, Martínez M, Martínez-Larrañaga MR, Anadón A, Martínez MA (2016) Fipronil sulfone induced higher cytotoxicity than fipronil in SH-SY5Y cells: Protection by antioxidants. Toxicol Lett 252:42–49. https://doi.org/10.1016/j.toxlet.2016.04.005

  44. Sachett A, Bevilaqua F, Chitolina R, Garbinato C, Gasparetto H, Dal Magro J, Conterato GM, Siebel AM (2018) Ractopamine hydrochloride induces behavioral alterations and oxidative status imbalance in zebrafish. J Toxicol Environ Heal—Part A 81(7):194–201. https://doi.org/10.1080/15287394.2018.1434848

  45. Sarikaya R, Yilmaz M (2003) Investigation of acute toxicity and the effect of 2,4-D (2,4 dichlorophenoxyacetic acid) herbicide on the behavior of the common carp (Cyprinus carpio L., 1758; Pisces, Cyprinidae). Chemosphere 52(1):195–201. https://doi.org/10.1016/S0045-6535(03)00106-1

  46. Shi J, Sun B, Shi W, Zuo H, Cui D, Ni L, Chen J (2015) Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumour Biol 36(2):655–662. https://doi.org/10.1007/s13277-014-2644-z

  47. Sinhorin VDG et al. (2014) Effects of the acute exposition to glyphosate-based herbicide on oxidative stress parameters and antioxidant responses in a hybrid Amazon fish surubim (Pseudoplatystoma sp). Ecotoxicol Environ Saf 106:181–187

  48. Stehr CM, Linbo TL, Incardona JP, Scholz NL (2006) The developmental neurotoxicity of fipronil: notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicol Sci J Soc Toxicol 92:270–278. https://doi.org/10.1093/toxsci/kfj185

  49. Traina ME, Fazzi P, Macrì C, Ricciardi C, Stazi AV, Urbani E, Mantovani A (1998) In vivo studies on possible adverse effects on reproduction of the fungicide methyl thiophanate. J Appl Toxicol 18(4):241–248

  50. Valadas J, Mocelin R, Sachett A, Marcon M, Zanette RA, Dallegrave E, Herrmann AP, Piato A (2019) Propiconazole induces abnormal behavior and oxidative stress in zebrafish. Environ Sci Pollut Res Int 26(27):27808–27815. https://doi.org/10.1007/s11356-019-05977-3

  51. Vidau C, González-Polo RA, Niso-Santano M, Gómez-Sánchez R, Bravo-San Pedro JM, Pizarro-Estrella E, Blasco R, Brunet JL, Belzunces LP, Fuentes JM (2011) Fipronil is a powerful uncoupler of oxidative phosphorylation that triggers apoptosis in human neuronal cell line SHSY5Y. Neurotoxicology 32(6):935–943. https://doi.org/10.1016/j.neuro.2011.04.006

  52. Wang CY, Liu LN, Zhao ZB (2013) The role of ROS toxicity in spontaneous aneuploidy in cultured cells. Tissue Cell 45(1):47–53. https://doi.org/10.1016/j.tice.2012.09.004

  53. Wang X, Martínez MA, Wu Q, Ares I, Martínez-Larrañaga MR, Anadón A, Yuan Z (2016) Fipronil insecticide toxicology: oxidative stress and metabolism. Crit Rev Toxicol 46(10):876–899. https://doi.org/10.1080/10408444.2016.1223014

  54. Wu J, Lu J, Lu H, Lin Y, Wilson PC (2015) Occurrence and ecological risks from fipronil in aquatic environments located within residential landscapes. Sci Total Environ 518-519:139–147. https://doi.org/10.1016/j.scitotenv.2014.12.103

  55. Yadav A, Mishra PC (2013) Modeling the activity of glutathione as a hydroxyl radical scavenger considering its neutral non-zwitterionic form. J Mol Model 19(2):767–777. https://doi.org/10.1007/s00894-012-1601-2

  56. Yan L, Gong C, Zhang X, Zhang Q, Zhao M, Wang C (2016) Perturbation of metabonome of embryo/larvae zebrafish after exposure to fipronil. Environ Toxicol Pharmacol 48:39–45. https://doi.org/10.1016/j.etap.2016.10.002

  57. Yang C, Hamel C, Vujanovic V, Gan Y (2011) Fungicide: modes of action and possible impact on nontarget microorganisms. Int Sch Res Not Ecol. https://doi.org/10.5402/2011/130289

  58. Zaluski R, Kadri SM, Alonso DP, Martins RPE, de Oliveira OR (2015) Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses. Environ Toxicol Chem 34:1062–1069. https://doi.org/10.1002/etc.2889

  59. Zhang C, Wang J, Zhang S, Zhu L, Du Z, Wang J (2017) Acute and subchronic toxicity of pyraclostrobin in zebrafish (Danio rerio). Chemosphere 188:510–516. https://doi.org/10.1016/j.chemosphere.2017.09.025

Download references

Funding

This study was funded by Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) and Universidade Comunitária da Região de Chapecó (Unochapecó).

Author information

Correspondence to Anna M. Siebel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bevilaqua, F., Sachett, A., Chitolina, R. et al. A mixture of fipronil and fungicides induces alterations on behavioral and oxidative stress parameters in zebrafish. Ecotoxicology (2019). https://doi.org/10.1007/s10646-019-02146-7

Download citation

Keywords

  • Antioxidant system
  • Behavior
  • Non-target organisms
  • Methyl-thiophanate
  • Pesticide
  • Pyraclostrobin