, Volume 28, Issue 9, pp 1063–1074 | Cite as

Hormesis under oil-induced stress in Leersia hexandra Sw. used as phytoremediator in clay soils of the Mexican humid tropic

  • José Alberto Orocio-Carrillo
  • María del Carmen Rivera-CruzEmail author
  • Emilio Manuel Aranda-Ibañez
  • Antonio Trujillo-Narcía
  • Geovanni Hernández-Galvez
  • María Remedios Mendoza-López


The oil industry has inherent risks of spills or leaks due to natural or anthropogenic causes, which cause alterations in the soil and damage to the plant. An experiment was carried to investigate the effect of oil on the growth, biomass production, biosynthesis of crude protein of Leersia hexandra grass and the remove of oil from the soil. The results showed different responses by L. hexandra depending on the age, low concentrations of oil induced a significant increase in stolon length, in relative growth rate, in dry matter production and in the biosynthesis of crude protein. The same parameters decreased at high concentrations of oil. However, at the end of the evaluation period of 180 days, high concentrations of oil induced a significant increase in the number of young plants and secondary roots, the terminal third of the main root and root dry matter. The dose response curves had the shape of an inverted U, showing that at days 15, 45, 90 and 180, in stolon length, aerial dry matter production, crude protein (day 90) and young plants (days 45 and 90) exhibited a typical biphasic response. The increase in oil concentration correlated with increases in young plants, number of secondary roots, number of roots at the middle, terminal third and root dry matter. After 180 days exposure the rhizosphere of L. hexandra a total oil removal of oil of 76.7 ± 4 was achieved; 61.7, 51, 44.6, 38 and 52% in soils that initially contained 7.9, 54, 102, 126, 145 and 238 g oil.


Petroleum hydrocarbons Secondary roots Crude protein Phytoremediation 



This study was financially supported by funds from the Colegio de Postgraduados en Ciencias Agrícolas. The first author thanks the Consejo Nacional de Ciencia y Tecnología of Mexico for the scholarship 619174.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Agrawal M, Singh B, Agrawal SB, Bell JNB, Marshall F (2006) The effect of air pollution on yield and quality of mung bean grown in peri-urban areas of Varanasi. Water Air Soil Pollut 169(1):239–254. CrossRefGoogle Scholar
  2. AOAC (Association of Official Analytical Chemists) (1980) Official Methods of Analysis, 13th edn. Association of Official Analytical Chemists, Washington DCGoogle Scholar
  3. Aparicio R, González-Ronquillo M, Torres R, Astudillo L, Córdova L, Carrasquel J (2007) Degradabilidad de los pastos lambedora (Leersia hexandra) y paja de agua (Hymenachne amplesicaulis) en cuatro épocas del año de una sábana inundable del estado Apure, Venezuela. Zootec Trop 25(3):225–228Google Scholar
  4. Arias TA (2012) La ecotoxicidad y el pasto japonesa (Leersia sp) en la fitorremediación de un Gleysol contaminado con petróleos fresco, intemperizado y sulfato. Tesis de Maestría en Ciencias en Producción Agroalimentaria en el Trópico. Colegio de Postgraduados Campus Tabasco. H. Cárdenas, Tabasco, MéxicoGoogle Scholar
  5. Arias-Trinidad A, Rivera-Cruz MC, Roldán-Garrigós A, Aceves-Navarro LA, Quintero-Lizaola R, Hernández-Guzmán J (2017) Uso de Leersia hexandra (Poaceae) en la fitorremediación de suelos contaminados con petróleo fresco e intemperizado. Int J Trop Biol Conserv 65(1):21–30. CrossRefGoogle Scholar
  6. Azcón-Bieto J, Talón M (2008) Fundamentos de Fisiología Vegetal. McGraw-Hill. Interamericana, Madrid, EspañaGoogle Scholar
  7. Baldan E, Basaglia M, Fontana F, Shapleigh PJ, Casella S (2015) Development, assessment and evaluation of a biopile for hydrocarbons soil remediation. Int Biodeterior Biodegrad 98:66–72. CrossRefGoogle Scholar
  8. Bouyoucos G (1962) Hydrometer method for particle-size analysis of soils. Agron J. 54(5):464–465. CrossRefGoogle Scholar
  9. Brady CN, Weil RR (2008) The nature and properties of soils. Pearson Prentice Hall, New Jersey, Columbus Ohio, USAGoogle Scholar
  10. CABI (Centre for Agricultural Bioscience International) (2018) Invasive species compendium. CAB International, Wallingford, Reino Unido. https//
  11. Calabrese EJ (2012) Hormesis: improving predictions in the low-dose zone. In: Luch A (ed) Molecular, clinical and environmental toxicology, vol 101. Experientia, Amherst, MA, USA. Google Scholar
  12. Calabrese EJ, Blain RB (2009) Hormesis and plant biology. Environ Pollut 157(1):42–48. CrossRefGoogle Scholar
  13. Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res Int 12(1):34–48. CrossRefGoogle Scholar
  14. DOF (2006) Norma Mexicana NMX-AA-134-SCFI (2006) Suelos. Hidrocarburos Fracción Pesada por Extracción y Gravimetría. Método de Prueba. Diario Oficial de la Federación. D.F., México, Google Scholar
  15. Eichert T, Fernández V (2012) Uptake and release of elements by leaves and other aerial plant parts. In: Marschner P (ed.) Marschner's mineral nutrition of higher plants, 3rd edn. Academic Press Elsevier, San Diego CA, USA, p 71–83CrossRefGoogle Scholar
  16. Elgersma A, Soegaard K (2016) Effects of species diversity on seasonal variation in herbage yield and nutritive value of seven binary grass-legume mixtures and pure grass under cutting. Eur J Agron 78:73–83. CrossRefGoogle Scholar
  17. EPA (1986) Method 418.1 modif. Petroleum hydrocarbons total recoverable spectrophotometric infrared. Environmental Protection Agency, Washington, DC, USAGoogle Scholar
  18. Escaso SF, Martínez GJL, Planelló CMR (2010) Fundamentos Básicos de Fisiología Vegetal y Animal. Pearson Educación, S.A, Madrid, EspañaGoogle Scholar
  19. Etchevers BJD (1992) Manual de métodos para análisis de suelos, plantas agua y fertilizantes. Análisis rutinarios en estudios y programas de fertilidad. Laboratorio de Fertilidad, Centro de Edafología. Colegio de Postgraduados en Ciencias Agrícolas. Montecillos. edo, MéxicoGoogle Scholar
  20. González-Moscoso M, Rivera-Cruz MC, Delgadillo-Martínez J, Lagunes-Espinoza LC (2017) Growth analysis and plant production of Leersia hexandra Swartz in tropic wet mexican in fuction on petroleum and surfactant. Polibotánica 43:177–196. CrossRefGoogle Scholar
  21. Greenberg BM (2007) Field and laboratory test of multi-process phytoremediation system for decontamination of petroleum and salt impacted soils. Simposium Batelle Press. In: Proceeding of the 9th International in situ and on site Remediation. Ontario, Canada.
  22. Hunt R, Causton DR, Shipley B, Askew AP (2002) A modern tool for classical plant growth analysis. Ann Bot 90(4):485–488. CrossRefGoogle Scholar
  23. Hussain I, Puschenreiter M, Gerhard S, Schöftner P, Yousaf S, Wang A, Hussain SJ, Reichenauer TG (2018) Rhizoremediation of petroleum hydrocarbon-contaminated soils: improvement opportunities and field applications. Environ Exp Bot 147:202–219. CrossRefGoogle Scholar
  24. Janzen SJ, Teresinha ML (2018) Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: a review. J Environ Manag 210:104–113. CrossRefGoogle Scholar
  25. Jia L, He X, Chen W, Liu Z, Huang Y, Yu S (2013) Hormesis phenomena under Cd stress in a hyperaccumulator - Lonicera japonica Thunb. Ecotoxicology 22(3):476–485. CrossRefGoogle Scholar
  26. Jones JB, Wolf B, Mills HA (1992) Plant analysis handbook. A practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing, Inc., USAGoogle Scholar
  27. Juárez-Hernández J, Bolaños ED, Reinoso M (2004) Contenido de proteína por unidad de materia seca acumulada en pastos tropicales. Época nortes. Rev Cubana Cienc Agrícola 38(4):423–430Google Scholar
  28. Juárez-Hernández J, Bolaños-Aguilar ED (2007) Las curvas de dilución de la proteína como alternativa para la evaluación de pastos tropicales. Univ Cienc 23(1):81–90Google Scholar
  29. Lee SH, Lee WS, Lee CH, Kim JG (2007) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153(1–2):892–8. CrossRefGoogle Scholar
  30. Liao C, Liang X, Lu G, Thai T, Xu W, Dang Z (2015) Effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L.). Ecotoxicol Environ Safe 112:1–6. CrossRefGoogle Scholar
  31. Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148(1–2):4–14. CrossRefGoogle Scholar
  32. López-Martínez S, Gallegos-Martínez ME, Pérez-Flores LJ, Gutiérrez-Rojas M (2008) Contaminated soil phytoremediation by Cyperus laxus Lam. cytochrome p 450 erod-activity induced by hydrocarbons in roots. Int J Phytoremed 10(4):289–301. CrossRefGoogle Scholar
  33. Lynch J, Marschner P, Rengel Z (2012) Effect of internal and external factors on root growth and development. In: Marschner P (ed.) Marschner's mineral nutrition of higher plants, 3rd edn. Academic Press, San Diego, CA, p 331–346CrossRefGoogle Scholar
  34. Ma B, He Y, Chen HH, Xu JM, Rangel Z (2010) Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis. Environ Pollut 158(3):855–861. CrossRefGoogle Scholar
  35. Madigan TM, Martinko MJ, Bender SK, Buckley HD, Stahl AD (2015) Brock. Biología de los Microorganismos, 14a. edn. Pearson Educación S.A, Madrid, EspañaGoogle Scholar
  36. Maldonado-Chávez E, Rivera-Cruz MC, Izquierdo-Reyes F, Palma-López DJ (2010) Efectos de rizosfera, microorganismos y fertilización en la biorremediación y fitorremediación de suelos con petróleos crudo nuevo e intemperizado. Univ Cienc 26(2):121–136Google Scholar
  37. Maliszewska-Kordybach B, Smreczak B (2000) Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHS)–effect on plants. Environ Technol 21(10):1099–1110. CrossRefGoogle Scholar
  38. Marschner H (1995) Mineral nutrition of higher plants, 3th edn. Academic. Press, San Diego, CA, USAGoogle Scholar
  39. Muratova YA, Golubev NS, Dubrovskaya VE, Pozdnyakova NN, Panchenko VL, Pleshakova VE, Chernyshova PM, Turkovskaya VO (2012) Remediating abilities of different plant species grown in diesel-fuel-contaminated leached chernozem. Appl Soil Ecol 56:51–57. CrossRefGoogle Scholar
  40. Nkojo KL, Akinola MO, Oboh BO (2008) Growth and performance of Glycine max L. (Merrill) grown in crude oil contaminated soil augmented with cow dung. Life Sci J 5(3):89–93Google Scholar
  41. Novelo RA (2006) Plantas Acuáticas de la Reserva de la Biosfera Pantanos de Centla, 1a. edn. Editorial Espacios Naturales y Desarrollo Sustentable AC, México D.FGoogle Scholar
  42. Obayori OS, Llori MO, Abebusoye SA, Amund OO, Oyetibo GO (2008) Microbial population changes in tropical agricultural soil experimentally contaminated with crude petroleum. Afr J Biotechnol 7(24):4512–4520Google Scholar
  43. Okolo JC, Amadi EN, Odu CTI (2005) Effects of soil treatments containing poultry manure on crude oil degradation in sandy loam soil. Appl Ecol Env Res 3(1):47–53CrossRefGoogle Scholar
  44. Osuji LC, Onojake CM (2004) The Ebocha-8 oil spillage II. Fate of associated heavy metals six months after. AJEAM-RAGEE 9:78–87Google Scholar
  45. Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Coll Inter Sci 138(1):24–58. CrossRefGoogle Scholar
  46. Pérez-Hernández I, Ochoa-Gaona S, Adams RH, Rivera-Cruz MC, Pérez-Hernández V, Jarquín-Sánchez A, Geissen V, Martínez-Zurimendi P (2017) Growth of four tropical tree species in petroleum-contaminated soil and effects of crude oil contamination. Environ Sci Pollut Res 24(24):1769–1783. CrossRefGoogle Scholar
  47. Reyes-Purata A, Bolaños-Aguilar ED, Hernández-Sánchez D, Aranda-Ibáñez EM, Izquierdo-Reyes F (2009) Producción de materia seca y concentración de proteína en 21 genotipos del pasto humidícola Brachiaria humidicola (Rendle) Schweick. Univ Cienc 25(3):213–224Google Scholar
  48. Rhoades J (1982) Cation exchange capacity. In: Page AL (ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn. American Society of Agronomy/Soil Science Society of America, Madison, WI, USA, p 178–190Google Scholar
  49. Rincon CA, Ligarreto MA, Garay E (2008) Forage production in the grasses Brachiaria decumbens cv. Amargo and Brachiaria brizantha cv. Toledo subjected to three frequencies and two of defoliation intensities under conditions of Colombian plain piedmont. Rev Facultad Nacional Agrícola Medellín 61(1):4336–4346Google Scholar
  50. Rivera-Cruz MC, Trujillo-Narcía A, Trujillo-Rivera EA, Arias-Trinidad A, Mendoza- López MR (2016) Natural attenuation of weathered oil using aquatic plants in a farm in southeast Mexico. Int J Phytoremediat 18(9):877–884. CrossRefGoogle Scholar
  51. Salisbury FB, Ross CW (2000) Fisiología de las Plantas: Desarrollo de las Plantas y Fisiología Ambiental. Thomson Editores, Madrid, EspañaGoogle Scholar
  52. SAS (Statiscal Analysis Systems) (2005) “User's guide”, versión 9.1.3. SAS Institute, Inc, Cary, NC, p 664Google Scholar
  53. Swart R, Schultz DW, Ozretich R, Lamberson JO, Cole FA, DeWitt TH, Redmond MS, Ferraro SP (1995) ΣPAH: a model to predict the toxicity of polynuclear aromatic hydrocarbon mixtures in field-collected sediments. Environ Toxicol Chem 14(11):1977–1987. CrossRefGoogle Scholar
  54. Tadeo RF (2000) Fisiología de las Plantas y el Estrés. In: Azcon-Bieto J, Talon M (eds) Fundamentos de Fisiología Vegetal. McGraw-Hill Interamericana (Ed.), Madrid, España, p 577–598Google Scholar
  55. Trujillo-Narcía A, Rivera-Cruz MC, Lagunes-Espinosa LC, Palma-López DJ, Soto-Sánchez S, Ramírez-Valverde G (2012) Efecto de la restauración de un Fluvisol contaminado con petróleo crudo. Rev Int Contam Ambient 28(4):361–374Google Scholar
  56. Trujillo-Narcía A, Rivera-Cruz MC, Trujillo-Rivera EA, Roldán-Garrigos A (2018) Reintroducing plant coverage in a tropical wetland contaminated with oil and sulfate: rhizosphere effects on Desulfovibrio populations. Int J Trop Biol 66(2):908–917. CrossRefGoogle Scholar
  57. Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and aprosed modification of the chromic acid titration method. Soil Sci 37(1):29–38. CrossRefGoogle Scholar
  58. Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth promoting rhizobacteria for bioremediation. Environ Intern 33(3):406–413. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • José Alberto Orocio-Carrillo
    • 1
  • María del Carmen Rivera-Cruz
    • 1
    Email author
  • Emilio Manuel Aranda-Ibañez
    • 1
  • Antonio Trujillo-Narcía
    • 2
  • Geovanni Hernández-Galvez
    • 2
  • María Remedios Mendoza-López
    • 3
  1. 1.Laboratorio de Microbiología Agrícola y AmbientalColegio de Postgraduados Campus TabascoH. CárdenasMexico
  2. 2.Cuerpo Académico Energía y MedioambienteUniversidad Popular de la ChontalpaH. CárdenasMexico
  3. 3.Unidad de Servicios de Apoyo en Resolución AnalíticaUniversidad VeracruzanaXalapaMexico

Personalised recommendations