Advertisement

Transgenerational sublethal effects of abamectin and pyridaben on demographic traits of Phytonemus pallidus (Banks) (Acari: Tarsonemidae)

  • Mozhgan Hedayati
  • Amin Sadeghi
  • Mostafa MaroufpoorEmail author
  • Hamed Ghobari
  • Ali GüncanEmail author
Article

Abstract

In addition to determining the lethal effects, identifying sublethal effects of a pesticide is crucial to understanding the total impact a pesticide may have on a pest population. We determined the sublethal effects the two pesticides, abamectin and pyridaben, have on the cyclamen mite, Phytonemus pallidus (Banks) (Acari: Tarsonemidae)—a major pest of strawberry. Demographic traits of the P. pallidus progeny (F1 generation) produced by parents (F0 generation) treated with a low lethal concentration (LC15) of abamectin and pyridaben were assessed using the age-stage, two-sex life table theory. The total longevity of the F1 generation (males = 10.78 days; female = 14.35 days) was the shortest in the progeny of the abamectin treated parents, differing significantly from the progeny of mites treated with pyridaben (males = 11.50 days, females = 15.63 days), and the control population (males = 13.50 days, females = 17.81 days). The intrinsic rates of increase (r) and the finite rates of increase (λ) of the progeny of abamectin (r = 0.0854 day−1, λ = 1.0891 day−1) and pyridaben (r = 0.0951 day−1, λ = 1.0997 day−1) treated parents were significantly lower than in the control mites (r = 0.1455 day−1, λ = 1.1567 day−1). The lowest fecundity (5.35 eggs/female), occurred in F1 female offspring of parents treated with LC15 concentrations of abamectin, which was significantly lower than in the pyridaben (6.11 eggs/female) and control treatments (11.45 eggs/female). Transgenerational sublethal effects of abamectin and pyridaben in P. pallidus can be effectively used to for optimizing IPM programs against this pest on strawberries.

Keywords

Sublethal Abamectin Pyridaben Life table Phytonemus pallidus 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Akca I, Ayvaz T, Yazici E, Smith CL, Chi H (2015) Demography and population projection of Aphis fabae (Hemiptera: Aphididae): with additional comments on life table research criteria. J Econ Entomol 108:1466–1478.  https://doi.org/10.1093/jee/tov187 CrossRefGoogle Scholar
  2. Alford DV (1972a) The effect of Tarsonemus fragariae Zimmermann (Acarina: Tarsonemidae) on strawberry yields. Ann Appl Biol 70:13–18.  https://doi.org/10.1111/j.1744-7348.1972.tb04683.x CrossRefGoogle Scholar
  3. Alford DV (1972b) Chemical control of the strawberry mite on mown and unmown strawberry plants. Plant Pathol 21:92–94.  https://doi.org/10.1111/j.1365-3059.1972.tb01733.x CrossRefGoogle Scholar
  4. Bahrami Kamangar S, Mansour Ghazi M, Magowski WL, Smagghe G (2016) Strawberry mite (Phytonemus pallidus fragariae), a new record of tarsonemid mites (Acari: Tarsonemidae) in Iran. Persian J Acarol 5:351–354.  https://doi.org/10.22073/pja.v5i4.23697 Google Scholar
  5. Bin Ibrahim Y, Yee TS (2000) Influence of sublethal exposure to abamectin on the biological performance of Neoseiulus longispinosus (Acari: Phytoseiidae). J Econ Entomol 93:1085–1089.  https://doi.org/10.1603/0022-0493-93.4.1085 CrossRefGoogle Scholar
  6. Bozhgani NSS, Ghobadi H, Riahi E (2018) Sublethal effects of chlorfenapyr on the life table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Syst Appl Acarol 23:1342–1351.  https://doi.org/10.11158/saa.23.7.11 Google Scholar
  7. Breda MO, Oliveira JV, Filho ABE, Barbosa DRS, Santos AA (2017) Lethal and sublethal effects of pesticides in the management of Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae) on Capsicum annuum L. Pest Manag Sci 73:2054–2062.  https://doi.org/10.1002/ps.4571 CrossRefGoogle Scholar
  8. CABI (2018) Phytonemus pallidus. Crop Protection Compendium. CAB International, Wallingford. http://www.cabi.org/cpc
  9. Chen GM, Chi H, Wang RC, Wang YP, Xu YY, Li XD, Yin P, Zheng FQ (2018) Demography and uncertainty of population growth of Conogethes punctiferalis (Lepidoptera: Crambidae) reared on five host plants with discussion on some life history statistics. J Econ Entomol 111:2143–2152.  https://doi.org/10.1093/jee/toy202 CrossRefGoogle Scholar
  10. Chen X, Ma K, Li F, Liang P, Liu Y, Guo T, Song D, Desneux N, Gao X (2016) Sublethal and transgenerational effects of sulfoxaflor on the biological traits of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Ecotoxicology 25:1841–1848.  https://doi.org/10.1007/s10646-016-1732-9 CrossRefGoogle Scholar
  11. Chi H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol 17:26–34.  https://doi.org/10.1093/ee/17.1.26 CrossRefGoogle Scholar
  12. Chi H (1990) Timing of control based on the stage structure of pest populations: a simulation approach. J Econ Entomol 83:1143–1150.  https://doi.org/10.1093/jee/83.4.1143 CrossRefGoogle Scholar
  13. Chi H (2018a) TWOSEX-MSChart: a computer program for the age–stage, two-sex life table analysis. http://140.120.197.173/Ecology/Download/TWOSEX-MSChart.rar
  14. Chi H (2018b) TIMING-MSChart: a computer program for the population projection based on age–stage, two-sex life table. http://140.120.197.173/Ecology/Download/TIMING-MSChart.rar
  15. Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Bull Inst Zool Acad Sin 24:225–240Google Scholar
  16. Chi H, Su HY (2006) Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ Entomol 35:10–21.  https://doi.org/10.1603/0046-225x-35.1.10 CrossRefGoogle Scholar
  17. Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63:524–554.  https://doi.org/10.1002/ps.1378
  18. Croft BA, Pratt PD, Koskela G, Kaufman D (1998) Predation, reproduction, and impact of phytoseiid mites (Acari: Phytoseiidae) on cyclamen mite (Acari: Tarsonemidae) on strawberry. J Econ Entomol 91:1307–1314.  https://doi.org/10.1093/jee/91.6.1307 CrossRefGoogle Scholar
  19. Daniels RE, Allan JD (1981) Life table evaluation of chronic exposure to a pesticide. Can J Fish Aquat Sci 38:485–494.  https://doi.org/10.1139/f81-070 CrossRefGoogle Scholar
  20. Dekeyser MA (2005) Acaricide mode of action. Pest Manag Sci 61:103–110.  https://doi.org/10.1002/ps.994 CrossRefGoogle Scholar
  21. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106.  https://doi.org/10.1146/annurev.ento.52.110405.091440 CrossRefGoogle Scholar
  22. Druciarek T, Lewandowski M, Kozak M (2014) Demographic parameters of Phyllocoptes adalius (Acari: Eriophyoidea) and influence of insemination on female fecundity and longevity. Exp Appl Acarol 63:349–360.  https://doi.org/10.1007/s10493-014-9782-2
  23. Easterbrook MA, Fitzgerald JD, Pinch C, Tooley J, Xu XM (2003) Development times and fecundity of three important arthropod pests of strawberry in the United Kingdom. Ann Appl Biol 143:325–331.  https://doi.org/10.1111/j.1744-7348.2003.tb00301.x CrossRefGoogle Scholar
  24. Easterbrook MA, Fitzgerald JD, Solomon MG (2001) Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius) (Acari: Phytoseiidae). Exp Appl Acarol 25:25–36.  https://doi.org/10.1023/A:1010685903130 CrossRefGoogle Scholar
  25. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, New YorkGoogle Scholar
  26. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  27. Fisher RA (1958) The genetical theory of natural selection. Dover Publication Inc., New YorkGoogle Scholar
  28. Fitzgerald J, Pepper N, Easterbrook M, Pope T, Solomon M (2007) Interactions among phytophagous mites, and introduced and naturally occurring predatory mites, on strawberry in the UK. Exp Appl Acarol 43:33–47.  https://doi.org/10.1007/s10493-007-9094-x CrossRefGoogle Scholar
  29. Forbes VE, Calow P (1999) Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ Toxicol Chem 18:1544–1556.  https://doi.org/10.1002/etc.5620180729 CrossRefGoogle Scholar
  30. Fountain MT, Harris AL, Cross JV (2010) The use of surfactants to enhance acaricide control of Phytonemus pallidus (Acari: Tarsonemidae) in strawberry. Crop Prot 29:1286–1292.  https://doi.org/10.1016/j.cropro.2010.06.016 CrossRefGoogle Scholar
  31. Goodman D (1982) Optimal life histories, optimal notation, and the value of reproductive value. Am Nat 119:803–823.  https://doi.org/10.1086/283956 CrossRefGoogle Scholar
  32. Guedes RNC, Smagghe G, Stark JD, Desneux N (2016) Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu Rev Entomol 61:43–62.  https://doi.org/10.1146/annurev-ento-010715-023646 CrossRefGoogle Scholar
  33. Hamedi N, Fathipour Y, Saber M (2011) Sublethal effects of abamectin on the biological performance of the predatory mite, Phytoseius plumifer (Acari: Phytoseiidae). Exp Appl Acarol 53:29–40.  https://doi.org/10.1007/s10493-010-9382-8 CrossRefGoogle Scholar
  34. Havasi M, Kheradmand K, Mosallanejad H, Fathipour Y (2018) Sublethal effects of diflovidazin on life table parameters of two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Int J Acarol 44:115–120.  https://doi.org/10.1080/01647954.2017.1417328 CrossRefGoogle Scholar
  35. Hellqvist S (2002) Heat tolerance of strawberry tarsonemid mite Phytonemus pallidus. Ann Appl Biol 141:67–71.  https://doi.org/10.1111/j.1744-7348.2002.tb00196.x CrossRefGoogle Scholar
  36. Hollingworth RM, Ahammadsahib KI, Gadelhak G, Mclaughlin JL (1994) New inhibitors of complex-I of the mitochondrial electron-transport chain with activity as pesticides. Biochem Soc Trans 22:230–233.  https://doi.org/10.1042/bst0220230 CrossRefGoogle Scholar
  37. Hoy MA (1995) Multitactic resistance management: an approach that is long overdue? Fla Entomol 78:443–451.  https://doi.org/10.2307/3495528 CrossRefGoogle Scholar
  38. Huang HW, Chi H, Smith CL (2018) Linking demography and consumption of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) fed on Solanum photeinocarpum (Solanales: Solanaceae): with a new method to project the uncertainty of population growth and consumption. J Econ Entomol 111:1–9.  https://doi.org/10.1093/jee/tox330 Google Scholar
  39. Huang YB, Chi H (2012) Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci 19:263–273.  https://doi.org/10.1111/j.1744-7917.2011.01424.x CrossRefGoogle Scholar
  40. Huffaker CB, Kennett CE (1956) Experimental studies on predation: predation and cyclamen-mite populations on strawberries in California. Hilgardia 26:191–222.  https://doi.org/10.3733/hilg.v26n04p191 CrossRefGoogle Scholar
  41. IRAC (2018) IRAC Mode of action classification scheme. Version 8.4. http://www.irac-online.org
  42. Ismail MSM, Soliman MFM, El Naggar MH, Ghallab MM (2007) Acaricidal activity of spinosad and abamectin against two-spotted spider mites. Exp Appl Acarol 43:129–135.  https://doi.org/10.1007/s10493-007-9108-8 CrossRefGoogle Scholar
  43. Jansson RK, Dybas RA (1996) Avermectins: biochemical mode of action, biological activity and agricultural importance. In: Ishaaya I, Degheele D (eds.) Insecticides with novel modes of action: mechanisms and application. Springer-Verlag, New York, p. 152–170Google Scholar
  44. Kim M, Shin D, Suh E, Cho K (2004) An assessment of the chronic toxicity of fenpyroximate and pyridaben to Tetranychus urticae using a demographic bioassay. Appl Entomol Zool 39:401–409.  https://doi.org/10.1303/aez.2004.401 CrossRefGoogle Scholar
  45. Kim M, Sim C, Shin D, Suh E, Cho KJ (2006) Residual and sublethal effects of fenpyroximate and pyridaben on the instantaneous rate of increase of Tetranychus urticae. Crop Prot 25:542–548.  https://doi.org/10.1016/j.cropro.2005.08.010 CrossRefGoogle Scholar
  46. Łabanowska BH, Piotrowski W, Korzeniowski M, Cuthbertson AGS (2015b) Control of the strawberry mite, Phytonemus pallidus (Banks) in strawberry plantations by alternative acaricides. Crop Prot 78:5–14.  https://doi.org/10.1016/j.cropro.2015.08.014 CrossRefGoogle Scholar
  47. Łabanowska BH, Tartanus M, Gruchała M, Masny A (2015a) Efficacy of Beauveria Bassiana and Abamectin in the control of strawberry mite—Phytonemus pallidus (Banks) (Acari: Tarsonemidae) and the susceptibility of cultivars to pest infestation. J Berry Res 5:1–7.  https://doi.org/10.3233/Jbr-140084 CrossRefGoogle Scholar
  48. Li YY, Fan X, Zhang GH, Liu YQ, Chen HQ, Liu H, Wang JJ (2017) Sublethal effects of bifenazate on life history and population parameters of Tetranychus urticae (Acari: Tetranychidae). Syst Appl Acarol 22:148–158.  https://doi.org/10.11158/saa.22.1.15 Google Scholar
  49. Maas JL (1998) Compendium of strawberry diseases, 2nd edn. American Phytopathological Society, St. PaulGoogle Scholar
  50. Marcic D (2007) Sublethal effects of spirodiclofen on life history and life-table parameters of two-spotted spider mite (Tetranychus urticae). Exp Appl Acarol 42:121–129.  https://doi.org/10.1007/s10493-007-9082-1 CrossRefGoogle Scholar
  51. Marcic D (2012) Acaricides in modern management of plant-feeding mites. J Pest Sci 85:395–408.  https://doi.org/10.1007/s10340-012-0442-1 CrossRefGoogle Scholar
  52. Özgökçe MS, Chi H, Atlıhan R, Kara H (2018a) Demography and population projection of Myzus persicae (Sulz.) (Hemiptera: Aphididae) on five pepper (Capsicum annuum L.) cultivars. Phytoparasitica 46:153–167.  https://doi.org/10.1007/s12600-018-0651-0 CrossRefGoogle Scholar
  53. Özgökçe MS, Chi H, Atlıhan R, Kara H (2018b) Correction to: demography and population projection of Myzus persicae (Sulz.) (Hemiptera: Aphididae) on five pepper (Capsicum annuum L.) cultivars. Phytoparasitica 46:169.  https://doi.org/10.1007/s12600-018-0658-6 CrossRefGoogle Scholar
  54. Park JJ, Kim M, Lee JH, Shin KI, Lee SE, Kim JG, Cho K (2011) Sublethal effects of fenpyroximate and pyridaben on two predatory mite species, Neoseiulus womersleyi and Phytoseiulus persimilis (Acari, Phytoseiidae). Exp Appl Acarol 54:243–259.  https://doi.org/10.1007/s10493-011-9435-7 CrossRefGoogle Scholar
  55. Qu Y, Xiao D, Liu J, Chen Z, Song L, Desneux N, Benelli G, Gao X, Song D (2017) Sublethal and hormesis effects of beta-cypermethrin on the biology, life table parameters and reproductive potential of soybean aphid Aphis glycines. Ecotoxicology 26:1002–1009.  https://doi.org/10.1007/s10646-017-1828-x CrossRefGoogle Scholar
  56. Roush RT (1989) Designing resistance management programs: how can you choose? Pestic Sci 26:423–441.  https://doi.org/10.1002/ps.2780260409 CrossRefGoogle Scholar
  57. Saber M, Ahmadi Z, Mahdavinia G (2018) Sublethal effects of spirodiclofen, abamectin and pyridaben on life-history traits and life-table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 75:55–67.  https://doi.org/10.1007/s10493-018-0226-2 CrossRefGoogle Scholar
  58. SAS Institute Inc. (2017) SAS/STAT® 14.3 User’s Guide. Cary, North CarolinaGoogle Scholar
  59. Smith LM, Goldsmith EV (1936) The cyclamen mite, Tarsonemus pallidus, and its control on field strawberries. Hilgardia 10:53–94.  https://doi.org/10.3733/hilg.v10n03p053 CrossRefGoogle Scholar
  60. Sparks TC, Nauen R (2015) IRAC: Mode of action classification and insecticide resistance management. Pestic Biochem Phys 121:122–128.  https://doi.org/10.1016/j.pestbp.2014.11.014 CrossRefGoogle Scholar
  61. Spooner-Hart RN, Herron GA (2003) Laboratory based relative pesticide efficacy against cyclamen mite, Phytonemus pallidus (Banks) (Acari: Tarsonemidae). Gen Appl Ent 32:61–64Google Scholar
  62. Stark JD, Banks JE (2003) Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol 48:505–519.  https://doi.org/10.1146/annurev.ento.48.091801.112621 CrossRefGoogle Scholar
  63. Stark JD, Banks JE, Vargas R (2004) How risky is risk assessment: The role that life history strategies play in susceptibility of species to stress. Proc Natl Acad Sci USA 101:732–736.  https://doi.org/10.1073/pnas.0304903101 CrossRefGoogle Scholar
  64. Stark JD, Jepson PC, Mayer DF (1995) Limitations to use of topical toxicity data for predictions of pesticide side-effects in the field. J Econ Entomol 88:1081–1088.  https://doi.org/10.1093/jee/88.5.1081 CrossRefGoogle Scholar
  65. Stenseth C (1975) Heat tolerance in the strawberry mite, Steneotarsonemus pallidus Banks (Acarina: Tarsonemidae). Forskning og Forsoek i Landbruket 26:115–120Google Scholar
  66. Stenseth C, Nordby ALF (1976) Damage, and control of the strawberry mite Steneotarsonemus pallidus (Acarina: Tarsonemidae), on strawberries. J Hortic Sci 51:49–54.  https://doi.org/10.1080/00221589.1976.11514663 CrossRefGoogle Scholar
  67. Strong L, Brown TA (1987) Avermectins in insect control and biology: a review. B Entomol Res. 77:357–389.  https://doi.org/10.1017/S0007485300011846 CrossRefGoogle Scholar
  68. Tuan SJ, Lee CC, Chi H (2014a) Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag Sci 70:805–813.  https://doi.org/10.1002/ps.3618 CrossRefGoogle Scholar
  69. Tuan SJ, Lee CC, Chi H (2014b) Erratum: Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag Sci 70:1936.  https://doi.org/10.1002/ps.3920 CrossRefGoogle Scholar
  70. Tuovinen T, Lindqvist I (2010) Maintenance of predatory phytoseiid mites for preventive control of strawberry tarsonemid mite Phytonemus pallidus in strawberry plant propagation. Biol Control 54:119–125.  https://doi.org/10.1016/j.biocontrol.2010.04.006 CrossRefGoogle Scholar
  71. van Leeuwen T, Tirry L, Yamamoto A, Nauen R, Dermauw W (2015) The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic Biochem Phys 121:12–21.  https://doi.org/10.1016/j.pestbp.2014.12.009 CrossRefGoogle Scholar
  72. van Kruistum G, Verschoor J, Hoek H (2014) CATT as a non-chemical pest and nematode control method in strawberry mother planting stock. J Berry Res 4:29–35.  https://doi.org/10.3233/Jbr-140063 CrossRefGoogle Scholar
  73. Zalom FG, Thompson PB, Nicola N (2009) Cyclamen mite, Phytonemus pallidus (Banks), and other tarsonemid mites in strawberries. Acta Hortic 842:243–246.  https://doi.org/10.17660/ActaHortic.2009.842.39 CrossRefGoogle Scholar
  74. Zhang P, Zhao YH, Wang QH, Mu W, Liu F (2017) Lethal and sublethal effects of the chitin synthesis inhibitor chlorfluazuron on Bradysia odoriphaga Yang and Zhang (Diptera: Sciaridae). Pestic Biochem Phys 136:80–88.  https://doi.org/10.1016/j.pestbp.2016.07.007 CrossRefGoogle Scholar
  75. Zhang ZQ, Sanderson JP (1990) Relative toxicity of abamectin to the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) and twospotted spider mite (Acari: Tetranychidae). J Econ Entomol 83:1783–1790.  https://doi.org/10.1093/jee/83.5.1783 CrossRefGoogle Scholar
  76. Zhen C, Miao L, Gao X (2018) Sublethal effects of sulfoxaflor on biological characteristics and vitellogenin gene (AlVg) expression in the mirid bug, Apolygus lucorum (Meyer-Dur). Pestic Biochem Phys 144:57–63.  https://doi.org/10.1016/j.pestbp.2017.11.008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant Protection, Agriculture FacultyUniversity of KurdistanSanandajIran
  2. 2.Department of Plant Protection, Faculty of AgricultureOrdu UniversityOrduTurkey

Personalised recommendations