Advertisement

Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity

  • Zhiqiang Sun
  • Tiantian Xiong
  • Ting Zhang
  • Nanfang Wang
  • Da Chen
  • Shaoshan LiEmail author
Article

Abstract

Zinc oxide nanoparticles (ZnO-NPs) are widely used in consumer products, which have raised concerns about their impact on the human health and environment. In this study, Allium cepa were treated with 5 and 50 μg/mL ZnO-NPs solutions for 12, 24, and 36 h, respectively. The cytotoxic and genotoxic effects of ZnO-NPs in root meristems of Allium cepa cells were characterized by cell membrane integrity, metabolic activity, reactive oxygen species (ROS) accumulation, DNA damage, chromosome aberration, and cell cycle progression. Substantially elevated Zn levels were observed in the cytoplasmic and nuclear fractions, and the accumulation of zinc in the nuclear fraction (up to 9764 μg/g) was one magnitude greater than that in the cytoplasm (up to 541 μg/g). The complexation of Zn2+ with diethylene triamine pentacetic acid (DTPA) was performed to explicate the respective contribution of insoluble particles or Zn2+ to ZnO-NPs toxicity. We found that the inhibition of root growth accounted for 24.2% or 36.1% when the plants were exposed to Zn2+ that released from 5 or 50 μg/mL of ZnO-NPs for 36 h, respectively, whereas the exposure to 5 or 50 μg/mL of insoluble particles resulted in 75.8% or 63.9% of inhibition, respectively. These findings demonstrated that adverse effects exerted not just by Zn2+ released from ZnO-NPs, but also directly from the nanoparticles. These findings contribute to a better understanding of ZnO-NPs cytotoxicity and genotoxicity in plant cells and provide valuable information for further research on the phytotoxic mechanisms of ZnO-NPs.

Highlights

  • Substantially elevated Zn levels were observed in the cytoplasmic and nuclear fractions of A. cepa roots.

  • ZnO-NPs inhibited plant growth and induced severe cytotoxicity and genotoxicity.

  • The toxicity of ZnO particles is higher than zinc ions released from them.

Keywords

Zinc oxide nanoparticles Allium cepa DTPA Phytotoxicity 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant no. 31670266), the Guangdong Pearl River Scholar Funded Scheme (2012), the Science and Technology Program of Guangzhou, China (Grant no. 2014J4100053), and the Natural Science Foundation of Guangdong Province, China (Grant no. 2017A030313115) to Prof. Shaoshan Li. This work also received support from the Natural Science Foundation of China (Grant no. 41701572) and the Chinese Postdoctoral Science Foundation (Grant no. 2017M612684).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10646_2018_2010_MOESM1_ESM.docx (563 kb)
Supplementary Information

References

  1. Aaron B, Ron M, Nobuhiro S (2014) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240CrossRefGoogle Scholar
  2. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55(1):373–399CrossRefGoogle Scholar
  3. Balasubramanyam A, Sailaja N, Mahboob M, Rahman MF, Hussain SM, Grover P (2009) In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis 24(3):245–251CrossRefGoogle Scholar
  4. Bandyopadhyay S, Plascencia-villa G, Mukherjee A, Rico CM (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515–516:60–69CrossRefGoogle Scholar
  5. Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871CrossRefGoogle Scholar
  6. Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grownwheat. Journal of Nanoparticle Research 14(9):1125CrossRefGoogle Scholar
  7. Dev A, Srivastava AK, Karmakar S (2018) Nanomaterial toxicity for plants. Environ Chem Lett 16:85–100CrossRefGoogle Scholar
  8. Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research 14(9):1125.  https://doi.org/10.1007/s11051-012-1125-9 CrossRefGoogle Scholar
  9. Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2016) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225CrossRefGoogle Scholar
  10. García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2017) Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Sci Total Environ 589:11–24CrossRefGoogle Scholar
  11. García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2018) Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci Total Environ 644:770–780CrossRefGoogle Scholar
  12. Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186(1):952–955CrossRefGoogle Scholar
  13. Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A (2015) MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat Res 774:49–58CrossRefGoogle Scholar
  14. Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res/Genet Toxicol Environ Mutagen 807:25–32CrossRefGoogle Scholar
  15. Gichner T, Patková Z, Száková J, Žnidar I, Mukherjee A (2008) DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and γ-rays. Environ Exp Bot 62(2):113–119CrossRefGoogle Scholar
  16. Goix S, Lévêque T, Xiong TT, Schreck E, Baeza-Squiban A, Geret F, Uzu G, Austruy A, Dumat C (2014) Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. Environ Res 133:185–194CrossRefGoogle Scholar
  17. Gottschalk F, Ort C, Scholz RW, Nowack B (2011) Engineered nanomaterials in rivers--exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut 159(12):3439–3445CrossRefGoogle Scholar
  18. Grant WF (1982) Chromosome aberration assays in Allium. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res/Fundam Mol Mech Mutagen 99(3):273–291Google Scholar
  19. Heim J, Felder E, Tahir MN, Kaltbeitzel A, Heinrich UR, Brochhausen C, Mailänder V, Tremel W, Brieger J (2015) Genotoxic effects of zinc oxide nanoparticles. Nanoscale 7(19):8931–8938CrossRefGoogle Scholar
  20. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692CrossRefGoogle Scholar
  21. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1–3):613–621CrossRefGoogle Scholar
  22. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red s nanoconjugates in Arabidopsis thaliana. Nano Letters 10(7):2296–2302CrossRefGoogle Scholar
  23. Lee WL, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity ofmetal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry 29(3):669–675CrossRefGoogle Scholar
  24. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250CrossRefGoogle Scholar
  25. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585CrossRefGoogle Scholar
  26. Lin DH, Jing JI, Tian XL, Liu N, Yang K, Fengchang WU, Wang ZYA (2009) Environmental behavior and toxicity of engineered nanomaterials. Chin J 54(23):3590–3604Google Scholar
  27. Liu D, Jiang W, Maoxie LI (1992) Effects of trivalent and hexavalent chromium on root growth and cell division of Allium cepa. Hereditas 117(1):23–29CrossRefGoogle Scholar
  28. Lubick N (2008) Nanosilver toxicity: ions, nanoparticles—or both? Environ Sci Technol 42(23):8617–8617CrossRefGoogle Scholar
  29. Maluszynska J, Juchimiuk J (2005) Plant genotoxicity: a molecular cytogenetic approach in plant bioassays. Arch Ind Hyg Toxicol 56(2):177–184Google Scholar
  30. Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157(11):3034–3041CrossRefGoogle Scholar
  31. Michaelis M, Fischer C, Colombi Ciacchi L, Luttge A (2017) Variability of zinc oxide dissolution rates. Environ Sci Technol 51(8):4297–4305CrossRefGoogle Scholar
  32. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959–8964CrossRefGoogle Scholar
  33. Patil BC, Bhat GI (1992) A comparative study of MH and EMS in the induction of chromosomal aberrations on lateral root meristem in Clitoria ternatea L. Bus Inf Syst Eng 2(4):249–258Google Scholar
  34. Qin R, Wang C, Chen D, Björn LO, Li S (2015) Copper-induced root growth inhibition of Allium cepa var. agrogarum L. involves disturbances in cell division and DNA damage. Environ Toxicol Chem 34(5):1045–1055CrossRefGoogle Scholar
  35. Qiu Q, Wang Y, Yang Z, Xin J, Yuan J, Wang J, Xin G (2011) Responses of different chinese flowering cabbage (Brassica parachinensis L.) cultivars to cadmium and lead stress: screening for Cd+Pb pollution-safe cultivars. CLEAN - Soil Air Water 39(11):925–932CrossRefGoogle Scholar
  36. Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit Manag 9:76–84Google Scholar
  37. Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60(1):97–104CrossRefGoogle Scholar
  38. Rodriguez E, Azevedo R, Fernandes P, Santos C (2011) Cr(vi) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in/r Pisum sativum. Chemical Research in Toxicology 24(7):1040–1047CrossRefGoogle Scholar
  39. Rodríguez-Vargas JM, Ruiz-Magaña MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodríguez MI, Muñoz-Gámez JA, De Almodóvar MR, Siles E, Rivas AL, Jäättela M, Oliver FJ (2012) ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Research 22(7):1181–1198CrossRefGoogle Scholar
  40. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50CrossRefGoogle Scholar
  41. Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2012) Phytotoxic and genotoxic effects of ZnOnanoparticles on garlic (Allium sativum L.): A morphological study. Nanotoxicology 6(3):241–248CrossRefGoogle Scholar
  42. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479CrossRefGoogle Scholar
  43. Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69CrossRefGoogle Scholar
  44. Wang F, Jing X, Adams CA, Shi Z, Sun Y (2018) Decreased ZnO nanoparticle phytotoxicity to maize by arbuscular mycorrhizal fungus and organic phosphorus. Environ Sci Pollut Res 25(24):23736–23747CrossRefGoogle Scholar
  45. Wang S, Liu H, Zhang Y, Xin H (2015) The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Environ Toxicol Chem 34(3):554–561CrossRefGoogle Scholar
  46. Wang X, Li B, Ma Y, Hua L (2010) Development of a biotic ligand model for acute zinc toxicity to barley root elongation. Ecotoxicol Environ Saf 73(6):1272–1278CrossRefGoogle Scholar
  47. Xiang L, Zhao HM, Li YW, Huang XP, Wu XL, Zhai T, Yuan Y, Cai QY, Mo CH (2015) Effects of the size andmorphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environmental Science and Pollution Research 22(14):10452–10462CrossRefGoogle Scholar
  48. Xiong T, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, Pierart A, Sobanska S (2017) Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ Sci Technol 51:5242–5251CrossRefGoogle Scholar
  49. Xiong Y, Contento AL, Bassham DC (2007) Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 3(3):257–258CrossRefGoogle Scholar
  50. Xu Y, Wang C, Hou J, Dai S, Wang P, Miao L, Lv B, Yang Y, You G (2016) Effects of ZnO nanoparticles and Zn2+ on fluvial biofilms and the related toxicity mechanisms. Sci Total Environ 544:230–237CrossRefGoogle Scholar
  51. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76(2):167–179CrossRefGoogle Scholar
  52. Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Stuckey D, Ng WJ, Tan SK (2015a) Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere 120:211–219CrossRefGoogle Scholar
  53. Zhang R, Zhang H, Tu C, Hu X, Li L, Luo Y, Christie P (2015b) Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22(14):11109–11117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhiqiang Sun
    • 1
  • Tiantian Xiong
    • 1
  • Ting Zhang
    • 1
  • Nanfang Wang
    • 1
  • Da Chen
    • 2
  • Shaoshan Li
    • 1
    Email author
  1. 1.Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life ScienceSouth China Normal UniversityGuangzhouChina
  2. 2.School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and HealthJinan UniversityGuangzhouChina

Personalised recommendations