Advertisement

Ecotoxicology

, Volume 28, Issue 1, pp 76–85 | Cite as

Pigeon odor varies with experimental exposure to trace metal pollution

  • Sarah LeclaireEmail author
  • Marion Chatelain
  • Anaïs Pessato
  • Bruno Buatois
  • Adrien Frantz
  • Julien Gasparini
Article

Abstract

Trace metals are chemical pollutants that have well-known noxious effects on wildlife and that are current major environmental issues in urban habitats. Previous studies have demonstrated their negative (e.g. lead) or positive (e.g. zinc) effects on body condition, immunity and reproductive success. Because of their effects on condition, trace metals are likely to influence the production of condition-dependent ornaments. The last decade has revealed that bird odors, like mammal odors, can convey information on individual quality and might be used as secondary sexual ornaments. Here, we used solid-phase microextraction headspace sampling with gas chromatography—mass spectrometry to investigate whether plumage scent varied with experimental supplementation in lead and/or zinc in feral pigeons. Zinc supplementation (alone or in combination with lead) changed the proportion of several volatiles, including an increase in the proportion of hydroxy-esters. The production of these esters, that most likely originate from preen gland secretions, may be costly and might thus be reduced by stress induced by zinc deficiency. Although lead is known to negatively impact pigeon condition, it did not statistically affect feather scent, despite most of the volatiles that increased with zinc exposure tended to be decreased in lead-supplemented pigeons. Further studies should evaluate the functions of plumage volatiles to predict how trace metals can impact bird fitness.

Keywords

Scent Zinc Lead Birds Dove 

Notes

Acknowledgements

We thank the “Mairie de Paris” (Thomas Charachon) for allowing the capture of birds and the Centre de Recherche en Ecologie Experimentale et Predictive (CEREEP) which provided logistic support for the field work of this study. We are very thankful to T. Gayet, S. Pollet, S. Hasnaoui, F. Lorente, S. Perret and B. Decenciere for their help in field work.

Funding

This work was financed by grants from the local government (Ile-de-France: Sustainable Development Network R2DS, No. 2012–11 to JG), and from the “Agence Nationale de la Recherche” (No. ANR-13-PDOC-0002 to SL).

Compliance with ethical standards

All experiments were carried out in strict accordance with the recommendations of the “European Convention for the Protection of vertebrate Animals used for Experimental and Other Scientific Purposes” and were conducted under the authorizations of the “Ministère de l’éducation nationale, de l’enseignement supérieur et de la recherche” (authorization N_00093.02) and the “Direction Departementale des Services Veterinaires de Seine-et-Marne” (authorization N_ 77-05).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10646_2018_2001_MOESM1_ESM.docx (286 kb)
Supplementary Information

References

  1. Amo L, Avilés JM, Parejo D, Peña A, Rodríguez J, Tomás G (2012) Sex recognition by odour and variation in the uropygial gland secretion in starlings. J Anim Ecol 81:605–613CrossRefGoogle Scholar
  2. Archie EA, Theis KR (2011) Animal behaviour meets microbial ecology. Anim Behav 82:425–436.  https://doi.org/10.1016/j.anbehav.2011.05.029 CrossRefGoogle Scholar
  3. Azimi S, Rocher V, Muller M, Moilleron R, Thevenot DR (2005) Sources, distribution and variability of hydrocarbons and metals in atmospheric deposition in an urban area (Paris, France). Sci Total Environ 337:223–239CrossRefGoogle Scholar
  4. Balthazart J, Schoffeniels E (1979) Pheromones are involved in the control of sexual-behavior in birds. Naturwissenschaften 66:55–56CrossRefGoogle Scholar
  5. Balthazart J, Taziaux M (2009) The underestimated role of olfaction in avian reproduction? Behav Brain Res 200:248–259CrossRefGoogle Scholar
  6. Baos R, Blas J, Bortolotti GR, Marchant TA, Hiraldo F (2006) Adrenocortical response to stress and thyroid hormone status in free-living nestling white storks (Ciconia ciconia) exposed to heavy metal and arsenic contamination. Environ Health Perspect 114:1497CrossRefGoogle Scholar
  7. Berglund ÅM, Sturve J, Förlin L, Nyholm N (2007) Oxidative stress in pied flycatcher (Ficedula hypoleuca) nestlings from metal contaminated environments in northern Sweden Environ Res 105:330–339CrossRefGoogle Scholar
  8. Bernier UR, Allan SA, Quinn BP, Kline DL, Barnard DR, Clark GG (2008) Volatile compounds from the integument of white leghorn chickens (Gallus gallus domesticus L.): candidate attractants of ornithophilic mosquito species. J Sep Sci 31:1092–1099CrossRefGoogle Scholar
  9. Blaustein AR (1981) Sexual selection and mammalian olfaction. Am Nat 117:1006–1010CrossRefGoogle Scholar
  10. Bombail V et al. (2018) In search of stress odours across species: Behavioural responses of rats to faeces from chickens and rats subjected to various types of stressful events. Appl Anim Behav Sci 205:216–226.  https://doi.org/10.1016/j.applanim.2017.10.013 CrossRefGoogle Scholar
  11. Borges LMF, de Oliveira Filho JG, Ferreira LL, Louly CCB, Pickett JA, Birkett MA (2015) Identification of non-host semiochemicals for the brown dog tick, Rhipicephalus sanguineus sensu lato (Acari: Ixodidae), from tick-resistant beagles, Canis lupus familiaris. Ticks Tick-borne Dis 6:676–682CrossRefGoogle Scholar
  12. Brückner A, Heethoff M (2017) A chemo-ecologists’ practical guide to compositional data analysis. Chemoecology 27:33–46CrossRefGoogle Scholar
  13. Burger BV, Visser R, Moses A, Le Roux M (2006) Elemental sulfur identified in urine of cheetah. Acinonyx jubatus J Chem Ecol 32:1347–1352CrossRefGoogle Scholar
  14. Burger J, Gochfeld M (2005) Effects of lead on learning in herring gulls: an avian wildlife model for neurobehavioral deficits. Neurotoxicology 26:615–624CrossRefGoogle Scholar
  15. Campagna S, Mardon J, Celerier A, Bonadonna F (2012) Potential semiochemical molecules from birds: a practical and comprehensive compilation of the last 20 years studies. Chem Senses 37:3–25.  https://doi.org/10.1093/chemse/bjr067 CrossRefGoogle Scholar
  16. Caro SP, Balthazart J, Bonadonna F (2015) The perfume of reproduction in birds: Chemosignaling in avian social life. Horm Behav 68:25–42.  https://doi.org/10.1016/j.yhbeh.2014.06.001 CrossRefGoogle Scholar
  17. Castellanos P, del Olmo E, Fernández-Santos MR, Rodríguez-Estival J, Garde JJ, Mateo R (2015) Increased chromatin fragmentation and reduced acrosome integrity in spermatozoa of red deer from lead polluted sites. Sci Total Environ 505:32–38CrossRefGoogle Scholar
  18. Charpentier MJ, Barthes N, Proffit M, Bessière JM, Grison C (2012) Critical thinking in the chemical ecology of mammalian communication: roadmap for future studies. Funct Ecol 26:769–774CrossRefGoogle Scholar
  19. Chatelain M, Frantz A, Gasparini J, Leclaire S (2016a) Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon J Avian Biol 47:521–529CrossRefGoogle Scholar
  20. Chatelain M, Gasparini J, Frantz A (2016b) Do trace metals select for darker birds in urban areas? An experimental exposure to lead and zinc. Glob Change Biol 22:2380–2391CrossRefGoogle Scholar
  21. Chatelain M, Gasparini J, Frantz A (2016c) Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia). Ecotoxicology 25:521–529CrossRefGoogle Scholar
  22. Chatelain M, Gasparini J, Jacquin L, Frantz A (2014) The adaptive function of melanin-based plumage coloration to trace metals. Biol Lett 10  https://doi.org/10.1098/rsbl.2014.0164
  23. Chatelain M, Pessato A, Frantz A, Gasparini J, Leclaire S (2017) Do trace metals influence visual signals? Effects of trace metals on iridescent and melanic feather colouration in the feral pigeon. OikosGoogle Scholar
  24. Chilgren J, King J (1973) Thermoregulatory responses of Japanese Quail to various air temperatures and humidities. Int J Biometeorol 17:29–40CrossRefGoogle Scholar
  25. Datnoff LE, Elmer WH, Huber DM (2007) Mineral nutrition and plant disease. American Phytopathological Society (APS Press), St Paul, USAGoogle Scholar
  26. Dauwe T, Bervoets L, Blust R, Eens M (2002) Tissue levels of lead in experimentally exposed zebra finches (Taeniopygia guttata) with particular attention on the use of feathers as biomonitors. Arch Environ Contam Toxicol 42:88–92CrossRefGoogle Scholar
  27. De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574.  https://doi.org/10.1890/08-1823.1 CrossRefGoogle Scholar
  28. delBarco-Trillo J, Burkert B, Goodwin T, Drea C (2011) Night and day: the comparative study of strepsirrhine primates reveals socioecological and phylogenetic patterns in olfactory signals. J Evol Biol 24:82–98CrossRefGoogle Scholar
  29. Demayo A, Taylor MC, Taylor KW, Hodson PV, Hammond PB (1982) Toxic effects of lead and lead compounds on human health, aquatic life, wildlife plants, and livestock. Crit Rev Environ Sci Technol 12:257–305Google Scholar
  30. Douglas AE, Dobson AJ (2013) New synthesis: animal communication mediated by microbes: fact or fantasy? J Chem Ecol 39:1149–1149CrossRefGoogle Scholar
  31. Douglas HD (2013) Colonial seabird’s paralytic perfume slows lice down: an opportunity for parasite-mediated selection? Int J Parasitol 43:399–407CrossRefGoogle Scholar
  32. Douglas HD, Kitaysky AS, Kitaiskaia EV (2008) Seasonal covariation in progesterone and odorant emissions among breeding crested auklets (Aethia cristatella). Horm Behav 54:325–329CrossRefGoogle Scholar
  33. Ezenwa VO, Williams AE (2014) Microbes and animal olfactory communication: where do we go from here? BioEssays 36:847–854CrossRefGoogle Scholar
  34. Ferkin M, Sorokin E, Johnston R, Lee C (1997) Attractiveness of scents varies with protein content of the diet in meadow voles. Anim Behav 53:133–141CrossRefGoogle Scholar
  35. Filzmoser P, Hron K, Reimann C (2009) Principal component analysis for compositional data with outliers.Environmetrics 20:621–632CrossRefGoogle Scholar
  36. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227CrossRefGoogle Scholar
  37. Frantz A et al. (2012) Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale. Environ Pollut 168:23–28CrossRefGoogle Scholar
  38. Gabirot M, Buatois B, Müller CT, Bonadonna F (2018) Odour of King Penguin feathers analysed using direct thermal desorption discriminates between individuals but not sexes. IbisGoogle Scholar
  39. Gabirot M et al. (2016) Chemical labels differ between two closely related shearwater taxa. J Avian Biol 47:540–551CrossRefGoogle Scholar
  40. Giraudeau M, Mateos-Gonzalez F, Cotín J, Pagani-Nuñez E, Torné-Noguera A, Senar J (2015) Metal exposure influences the melanin and carotenoid-based colorations in great tits. Sci Total Environ 532:512–516CrossRefGoogle Scholar
  41. Godwin HA (2001) The biological chemistry of lead. Curr Opin Chem Biol 5:223–227CrossRefGoogle Scholar
  42. Goodwin TE et al. (2016) The role of bacteria in chemical signals of elephant musth: Proximate causes and biochemical pathways. In: Schulte BA (ed) Chemical signals in vertebrates 13. Springer, Cham, pp 63–85Google Scholar
  43. Gorissen L, Snoeijs T, Duyse EV, Eens M (2005) Heavy metal pollution affects dawn singing behaviour in a small passerine bird. Oecologia 145:504–509.  https://doi.org/10.1007/s00442-005-0091-7 CrossRefGoogle Scholar
  44. Gorman ML, Nedwell DB, Smith RM (1974) Analysis of contents of anal scent pockets of Herpestes auropunctatus (Carnivora-Viverridae). J Zool 172:389–399CrossRefGoogle Scholar
  45. Goutte A et al. (2014) Demographic consequences of heavy metals and persistent organic pollutants in a vulnerable long-lived bird, the wandering albatross. Proc R Soc Lond B: Biol Sci 281:20133313Google Scholar
  46. Grieves LA, Kelly TR, Bernards MA, MacDougall-Shackleton EA (2018) Malarial infection alters wax ester composition of preen oil in songbirds: results of an experimental study. Auk 135:767–776.  https://doi.org/10.1642/AUK-17-242.1 CrossRefGoogle Scholar
  47. Hagelin JC, Jones IL (2007) Bird odors and other chemical substances: a defense mechanism or overlooked mode of intraspecific communication? Auk 124:741–761CrossRefGoogle Scholar
  48. Havlicek J, Roberts SC, Flegr J (2005) Women’s preference for dominant male odour: effects of menstrual cycle and relationship status. Biol Lett 1:256–259CrossRefGoogle Scholar
  49. Hirao A, Aoyama M, Sugita S (2009) The role of uropygial gland on sexual behavior in domestic chicken Gallus gallus domesticus. Behav Process 80:115–120CrossRefGoogle Scholar
  50. Jacob J, Grimmer G (1975) Gefiederlipide der ringeltaube Columba palumbus/Plumage lipids from the ring dove (Columba palumbus). Z für Naturforsch C 30:363–368CrossRefGoogle Scholar
  51. Jacob J, Ziswiler V (1982) The uropygial gland. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 6. Academic Press, New-York, NY, pp 199–324CrossRefGoogle Scholar
  52. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182CrossRefGoogle Scholar
  53. Johnston RE, Bronson F (1982) Endocrine control of female mouse odors that elicit luteinizing hormone surges and attraction in males. Biol Reprod 27:1174–1180CrossRefGoogle Scholar
  54. Kaya H, Akbulut M (2015) Effects of waterborne lead exposure in mozambique tilapia: oxidative stress, osmoregulatory responses, and tissue accumulation. J Aquat Anim Health 27:77–87CrossRefGoogle Scholar
  55. Kimball BA, Yamazaki K, Kohler D, Bowen RA, Muth JP, Opiekun M, Beauchamp GK (2013) Avian influenza infection alters fecal odor in mallards. PloS ONE 8:e75411CrossRefGoogle Scholar
  56. Kirillov V, Stikhareva T, Suleimen Y, Serafimovich M, Kabanova S, Mukanov B (2017) Chemical composition of the essential oil from carnation coniferous (Dianthus acicularis Fisch. ex Ledeb) growing wild in Northern Kazakhstan. Nat Product Res 31:117–123CrossRefGoogle Scholar
  57. Koivula MJ, Eeva T (2010) Metal-related oxidative stress in birds. Environ Pollut 158:2359–2370CrossRefGoogle Scholar
  58. Krause TE, Krüger O, Kohlmeier P, Caspers BA (2012) Olfactory kin recognition in a songbird. Biol Lett 8:327–329.  https://doi.org/10.1098/rsbl.2011.1093 CrossRefGoogle Scholar
  59. Leclaire S, Merkling T, Raynaud C, Giacinti G, Bessière JM, Hatch SA, Danchin E (2011) An individual and a sex odor signature in kittiwakes? Study of the semiochemical composition of preen secretion and preen down feathers. Naturwissenschaften 98:615–624.  https://doi.org/10.1016/j.yhbeh.2008.07.002 CrossRefGoogle Scholar
  60. Leclaire S, Pierret P, Chatelain M, Gasparini J (2014a) Feather bacterial load affects plumage condition, iridescent color, and investment in preening in pigeons. Behav Ecol: aru109, 25:1192–1198Google Scholar
  61. Leclaire S, Strandh M, Mardon J, Westerdahl H, Bonadonna F (2017) Odour-based discrimination of similarity at the major histocompatibility complex in birds. In: Proc. R. Soc. B, vol 1846. The Royal Society, p 20162466Google Scholar
  62. Leclaire S et al. (2014b) Preen secretions encode information on MHC similarity in certain sex-dyads in a monogamous seabird. Sci Rep 4:6920Google Scholar
  63. Li Q et al. (2013) Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr Biol 23:11–20CrossRefGoogle Scholar
  64. López-Rull I, Pagán I, Macías Garcia C (2010) Cosmetic enhancement of signal coloration: experimental evidence in the house finch. Behav Ecol 21:781–787.  https://doi.org/10.1093/beheco/arq053 CrossRefGoogle Scholar
  65. Mardon J, Saunders JR, Bonadonna F (2011) From preen secretions to plumage: the chemical trajectory of blue petrels’ Halobaena caerulea social scent. J Avian Biol 42:29–38CrossRefGoogle Scholar
  66. Martin-Vivaldi M, Pena A, Manuel Peralta-Sanchez J, Sanchez L, Ananou S, Ruiz-Rodriguez M, Jose Soler J (2010) Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc R Soc B 277:123–130.  https://doi.org/10.1098/rspb.2009.1377 CrossRefGoogle Scholar
  67. Martín J, López P (2006) Links between male quality, male chemical signals, and female mate choice in Iberian rock lizards. Funct Ecol 20:1087–1096CrossRefGoogle Scholar
  68. McGraw KJ, Mackillop EA, Dale J, Hauber ME (2002) Different colors reveal different information: how nutritional stress affects the expression of melanin-and structurally based ornamental plumage. J Exp Biol 205:3747–3755Google Scholar
  69. Meillère A, Brischoux F, Bustamante P, Michaud B, Parenteau C, Marciau C, Angelier F (2016) Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula). Sci Total Environ 566:93–101CrossRefGoogle Scholar
  70. Montalti D, Gutiérrez AM, Reboredo G, Salibián A (2005) The chemical composition of the uropygial gland secretion of rock dove Columba livia.Comp Biochem Physiol A: Comp Physiol 140:275–279CrossRefGoogle Scholar
  71. Moreno-Rueda G (2015) Body‐mass‐dependent trade‐off between immune response and uropygial gland size in house sparrows Passer domesticus. J Avian Biol 46:40–45CrossRefGoogle Scholar
  72. Moreno-Rueda G (2017) Preen oil and bird fitness: a critical review of the evidence. Biol Rev 92:2131–2143CrossRefGoogle Scholar
  73. Moyer BR, Rock AN, Clayton DH (2003) Experimental test of the importance of preen oil in rock doves (Columba livia). Auk 120:490–496CrossRefGoogle Scholar
  74. Nriagu JO (1979) Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279:409–411CrossRefGoogle Scholar
  75. Nriagu JO (1996) A history of global metal pollution. Science 272:223CrossRefGoogle Scholar
  76. Oksanen J et al. (2013) Package ‘vegan’ Community ecology package, version 2Google Scholar
  77. Oteiza PI, Olin KL, Fraga CG, Keen CL (1995) Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes. J Nutr 125:823Google Scholar
  78. Pap PL, Vágási CI, Bărbos L, Marton A (2013) Chronic coccidian infestation compromises flight feather quality in house sparrows Passer domesticus. Biol J Linn Soc 108:414–428CrossRefGoogle Scholar
  79. Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM (2005) Lead toxicity update. A brief review. Med Sci Monit 11:RA329–RA336Google Scholar
  80. Penn D, Potts WK (1998) Chemical signals and parasite-mediated sexual selection. Trends Ecol Evol 13:391–396CrossRefGoogle Scholar
  81. Piault R, Gasparini J, Bize P, Paulet M, McGraw KJ, Roulin A (2008) Experimental support for the makeup hypothesis in nestling tawny owls (Strix aluco). Behav Ecol 19:703–709CrossRefGoogle Scholar
  82. Plum LM, Rink L, Haase H (2010) The Essential Toxin: Impact of Zinc on Human Health International. Journal of Environmental Research and Public Health 7:1342CrossRefGoogle Scholar
  83. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454SCrossRefGoogle Scholar
  84. Prasad AS (2003) Zinc deficiency: has been known of for 40 years but ignored by global health organisations. Br Med J 326:409CrossRefGoogle Scholar
  85. Prashanth L, Kattapagari KK, Chitturi RT, Baddam VRR, Prasad LK (2015) A review on role of essentialtrace elements in health and disease. Journal of Dr NTR university of health sciences 4:75CrossRefGoogle Scholar
  86. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  87. Raymer J, Wiesler D, Novotny M, Asa C, Seal U, Mech L (1986) Chemical scent constituents in urine of wolf (Canis lupus) and their dependence on reproductive hormones. J Chem Ecol 12:297–314CrossRefGoogle Scholar
  88. Roux KE, Marra PP (2007) The presence and impact of environmental lead in passerine birds along an urban to rural land use gradient. Arch Environ Contam Toxicol 53:261–268CrossRefGoogle Scholar
  89. Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. AMBIO 36:12–19CrossRefGoogle Scholar
  90. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842CrossRefGoogle Scholar
  91. Smith S, Burden H, Persad R, Whittington K, de Lacy Costello B, Ratcliffe NM, Probert C (2008) A comparative study of the analysis of human urine headspace using gas chromatography–mass spectrometry. J Breath Res 2:037022CrossRefGoogle Scholar
  92. Snoeijs T, Dauwe T, Pinxten R, Darras VM, Arckens L, Eens M (2005) The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch (Taeniopygia guttata). Environ Pollut 134:123–132CrossRefGoogle Scholar
  93. Snoeijs T, Dauwe T, Pinxten R, Vandesande F, Eens M (2004) Heavy metal exposure affects the humoral immune response in a free-living small songbird, the great tit (Parus major). Arch Environ Contam Toxicol 46:399–404CrossRefGoogle Scholar
  94. Soini HA, Schrock SE, Bruce KE, Wiesler D, Ketterson ED, Novotny MV (2007) Seasonal variation in volatile compound profiles of preen gland secretions of the dark-eyed junco (Junco hyemalis). J Chem Ecol 33:183–198.  https://doi.org/10.1007/s10886-006-9210-0 CrossRefGoogle Scholar
  95. Stefanidou M, Maravelias C, Dona A, Spiliopoulou C (2006) Zinc: a multipurpose trace element. Arch Toxicol 80:1CrossRefGoogle Scholar
  96. Tainer JA, Roberts VA, Getzoff ED (1992) Protein metal-binding sites. Curr Opin Biotechnol 3:378–387.  https://doi.org/10.1016/0958-1669(92)90166-G CrossRefGoogle Scholar
  97. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Luch A (ed) Molecular, clinical and environmental toxicology. Springer, Basel pp 133–164Google Scholar
  98. Thomas RH, Price ER, Seewagen CL, Mackenzie SA, Bernards MA, Guglielmo CG (2010) Use of TLC‐FID and GC‐MS/FID to examine the effects of migratory state, diet and captivity on preen wax composition in White‐throated Sparrows Zonotrichia albicollis. Ibis 152:782–792CrossRefGoogle Scholar
  99. Troïanowski M, Mondy N, Dumet A, Arcanjo C, Lengagne T (2017) Effects of traffic noise on tree frog stress levels, immunity, and color signaling. Conserv BiolGoogle Scholar
  100. Vallverdú-Coll Nr, Ortiz-Santaliestra ME, Mougeot Fo, Vidal D, Mateo R (2015) Sublethal Pb exposure produces season-dependent effects on immune response, oxidative balance and investment in carotenoid-based coloration in red-legged partridges. Environ Sci Technol 49:3839–3850CrossRefGoogle Scholar
  101. von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes, oxidative stress and condition–dependent sexual signals. Proc R Soc Lond B: Biol Sci 266:1–12Google Scholar
  102. Wallraff HG (2005) Avian navigation: pigeon homing as a paradigm. Springer Science & Business Media, BerlinGoogle Scholar
  103. Warton DI, Wright ST, Wang Y (2012) Distance‐based multivariate analyses confound location and dispersion effects. Methods Ecol Evol 3:89–101CrossRefGoogle Scholar
  104. Whelan RJ, Levin TC, Owen JC, Garvin MC (2010) Short-chain carboxylic acids from gray catbird (Dumetella carolinensis) uropygial secretions vary with testosterone levels and photoperiod. Comp Biochem Physiol Part B: Biochem Mol Biol 156:183–188CrossRefGoogle Scholar
  105. Whittaker DJ, Rosvall KA, Slowinski SP, Soini HA, Novotny MV, Ketterson ED (2017) Songbird chemical signals reflect uropygial gland androgen sensitivity and predict aggression: implications for the role of the periphery in chemosignaling. J Comparative Physiol A:1–11Google Scholar
  106. Whittaker DJ, Rosvall KA, Slowinski SP, Soini HA, Novotny MV, Ketterson ED (2018) Songbird chemical signals reflect uropygial gland androgen sensitivity and predict aggression: Implications for the role of the periphery in chemosignaling. J Comp Physiol A 204:5–15CrossRefGoogle Scholar
  107. Whittaker DJ, Soini HA, Atwell JW, Hollars C, Novotny MV, Ketterson ED (2010) Songbird chemosignals: volatile compounds in preen gland secretions vary among individuals, sexes, and populations. Behav Ecol 21:608–614.  https://doi.org/10.1093/beheco/arq033 CrossRefGoogle Scholar
  108. Whittaker DJ, Theis KR (2016) Bacterial communities associated with junco preen glands: Preliminary ramifications for chemical signaling. In: Schulte BA, Goodwin TE, Ferkin MH (eds) Chemical Signals in Vertebrates 13. Springer International Publishing, Cham, pp 105–117 https://doi.org/10.1007/978-3-319-22026-0_8CrossRefGoogle Scholar
  109. Wyatt TD (2014) Pheromones and animal behavior: chemical signals and signatures. Cambridge University Press, CambridgeGoogle Scholar
  110. Zahavi A, Zahavi A (1999) The handicap principle: a missing piece of Darwin’s puzzle. Oxford University Press, OxfordGoogle Scholar
  111. Zhang J-X, Sun L, Zuo M (2009) Uropygial gland volatiles may code for olfactory information about sex, individual, and species in Bengalese finches Lonchura striata. Curr Zool 55:357–365Google Scholar
  112. Zhang JX, Wei W, Zhang JH, Yang WH (2010) Uropygial gland-secreted alkanols contribute to olfactory sex signals in budgerigars. Chem Senses 35:375–382.  https://doi.org/10.1093/chemse/bjq025 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Evolution & Diversité BiologiqueUMR 5174 (CNRS, Université Paul Sabatier, ENFA)ToulouseFrance
  2. 2.Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHEMontpellierFrance
  3. 3.Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRDInstitut d’Ecologie et des Sciences de l’Environnement de ParisParisFrance
  4. 4.Wild Urban Evolution and Ecology Lab, Center of New TechnologiesUniversity of WarsawWarsawPoland
  5. 5.Centre for Integrative EcologyDeakin UniversityVictoriaAustralia

Personalised recommendations