Advertisement

Ecotoxicology

, Volume 28, Issue 1, pp 48–61 | Cite as

Toxicity of wine effluents and assessment of a depuration system for their control: assay with tadpoles of Rhinella arenarum (BUFONIDAE)

  • Ana Laura Navas RomeroEmail author
  • Mario Andrés Herrera Moratta
  • María Rosa Rodríguez
  • Lorena Beatriz Quiroga
  • Marcelo Echegaray
  • Eduardo Alfredo Sanabria
Article

Abstract

We evaluated the toxicity of the winery effluent and the efficiency of a symbiotic depuration system by means an experiment with Rhinella arenarum tadpoles. The studied effluent was taken from warehouses during the cleaning season. These effluents subsequently subjected to the purification treatment under evaluation. The effluent samples differentiated into two treatment levels: “raw” where the effluent was evaluated with field conditions and “treated” where the effluent was previously filtered with the symbiotic depuration system. The results of the bioassays compared with the physicochemical parameters determined in the effluent samples. The lethal response had a clear-cut correspondence with the effluent quality assessed utilizing physicochemical parameters. In all cases, dilution of the samples resulted in a significant reduction of their toxicity. It concluded that (a) winery effluents could be harmful to tadpoles of R. arenarum, (b) the symbiotic purification system used to treat wine effluents it would produce a significant reduction in the contaminant levels of the effluent. However, this reduction in contaminant levels does not provide sufficient safety for the release of the effluents into the environment.

Keywords

Bioassays Contaminants Winery Symbiotic 

Notes

Acknowledgements

We thank G. Herrera and H. Merenda for their collaboration in the field work. To F. Jofre Barud for her help with the statistical analyzes. Special thanks to D. Barrasso for help in the diaphanized of tadpoles. We thank the provincial fauna office of San Juan for permission to conduct our research (SA y DS n° 1300-4736-2011). To all the technical staff of the Institute of Chemistry of the FI-UNSJ for their collaboration in the laboratory. Special thanks to Anna Murakozy for the correction of the English and suggestions that improved this work. Finally, to the anonymous reviewers for helping us greatly improve this effort.

Funding

This work was funded by a CICITCA UNSJ project (I1010 Director: Miguel A. Navas).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. All members at the time of the investigation belonged to the Faculty of Exact, Physical, and Natural Sciences of the National University of San Juan. The corresponding author was the beneficiary of the CICITCA Scholarship.

Ethical approval

Although at the time of the investigation there was no ethical committee at the National University of San Juan, all international, national and institutional guidelines applicable to the care and use of animals have followed.

Informed consent

All authors declare to be participants in the research and their respective future consequences.

References

  1. Abel P, Skidmore J (1975) Toxic effects of an anionic detergent on the gills of rainbow trout. Water Res 9(8):759–765.  https://doi.org/10.1016/0043-1354(75)90068-8 Google Scholar
  2. Agostini M, Natale G, Ronco A (2010) Lethal and sublethal effects of cypermethrin to Hypsiboas pulchellus tadpoles. Ecotoxicol 19(8):1545–1550.  https://doi.org/10.1007/s10646-010-0539-3 Google Scholar
  3. Alvarado-Gámez A, Blanco-Sáenz R, Mora-Morales E (2002) El cromo como elemento esencial en los humanos. Rev Costa Cienc Med 23(1–2):55–68. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0253-29482002000100006&lng=en&nrm=iso&tlng=esGoogle Scholar
  4. Álvarez D, Nicieza A (2002) Effects of induced variation in anuran larval development on postmetamorphic energy reserves and locomotion. Oecol 131(2):186–195.  https://doi.org/10.1007/s00442-002-0876-x Google Scholar
  5. Álvarez-Colombo G, Dato C, Macchi G et al. (2011) Distribución y comportamiento de las larvas de la merluza argentina: evidencias de un mecanismo biofísico de autorreclutamiento en aguas de la plataforma continental norte de la Patagonia. Cienc Mar 37(4 B):633–657.  https://doi.org/10.7773/cm.v37i4B.1777 Google Scholar
  6. American Public Health Association (1992) Standard methods for the examination of water and wastewater. In: Greenberg A, Clesceri L, Eaton A (Eds), Standard Methods. United States of America: American Public Health Association, American Water Works Association, Water Environ. Fed.Google Scholar
  7. Babini M, Bionda C, Salas N et al. (2016) Adverse effect of agroecosystem pond water on biological endpoints of common toad (Rhinella arenarum) tadpoles. Environ Monit Assess 188(8).  https://doi.org/10.1007/s10661-016-5473-2
  8. Baker S, Herrchen M, Hund-Rinke K et al. (2003) Underlying issues including approaches and information needs in risk assessment. Ecotoxicol Environ Saf 56(1):6–19.  https://doi.org/10.1016/S0147-6513(03)00046-0 Google Scholar
  9. Bélanger-Deschênes S, Couture P, Campbell P et al. (2013) Evolutionary change driven by metal exposure as revealed by coding SNP genome scan in wild yellow perch (Perca flavescens). Ecotoxicol 22(5):938–957.  https://doi.org/10.1007/s10646-013-1083-8 Google Scholar
  10. Berger L (1989) Disappearance of amphibian larvae in the agricultural landscape. Ecol Int Bull 17:65–73Google Scholar
  11. Bishop C, Mahony N, Struger J et al. (1999) Anuran development, density and diversity in relation to agricultural activity in the Holland River Watershed, Ontario, Canada (1990–1992). Environ Monit Assess 57:21–43.  https://doi.org/10.1023/A:1005988611661 Google Scholar
  12. Bishop C, Pettit K (1992) Declines in Canadian amphibian populations. Canadian Wildlife Service Occasional Papers, Minnesota, CanadaGoogle Scholar
  13. Blaustein A, Wake D (1990) Declining amphibian populations: A global phenomenon? Trends Ecol Evol 5(7):203–204.  https://doi.org/10.1016/0169-5347(90)90129-2 Google Scholar
  14. Boone M, Semlitsch R (2002) Interactions of an insecticide with competition and pond drying in amphibian communities. Ecol Appl 12(1):307–316.  https://doi.org/10.1890/1051-0761(2002)012[0307:IOAIWC]2.0.CO;2 Google Scholar
  15. Brand A, Snodgrass J, Gallagher M et al. (2010) Lethal and sublethal effects of embryonic and larval exposure of Hyla versicolor to stormwater pond sediments. Arch Environ Contam Toxicol 58(2):325–331.  https://doi.org/10.1007/s00244-009-9373-0 Google Scholar
  16. Bridges C, Boone M (2003) The interactive effects of UV-B and insecticide exposure on tadpole survival, growth and development. Biol Conser 113(1):49–54.  https://doi.org/10.1016/S0006-3207(02)00348-8 Google Scholar
  17. Brown R, McClelland N, Deininger R et al. (1970) A water quality index- do we dare? Water Sew Works 117(10):339–343Google Scholar
  18. Burggren W, Mwalukoma A (1983) Respiration during chronic hypoxia and hyperoxia in larval and adult bullfrogs (Rana catesbeiana) I. Morphological responses of lungs, skin and gills. J Exp Biol 105(1):191–203Google Scholar
  19. Burke S, Michel M (2008) The effects of caudal scoliosis on swimming potential and survivability of wood frog (Rana sylvatica) tadpoles. BIOS 35502: Practicum in Field BiologyGoogle Scholar
  20. Bustamante M, Paredes C, Moral R et al. (2005) Uses of winery and distillery effluents in agriculture: characterization of nutrient and hazardous components. Water Sci Technol 51(1):145–151.  https://doi.org/10.2166/wst.2005.0018 Google Scholar
  21. Cabrera A (1971) Fitogeografía de la república Argentina. Bol Soc Argen Bot XIV(1–2):1–50Google Scholar
  22. Carey C, Cohen N, Rollins-Smith L (1999) Amphibian declines: An immunological perspective. Dev Comp Immunol 23(6):459–472.  https://doi.org/10.1016/S0145-305X(99)00028-2 Google Scholar
  23. Chinathamby K, Reina R, Bailey P et al. (2006) Effects of salinity on the survival, growth and development of tadpoles of the brown tree frog. Litoria ewingii Aust J Zool 54:97–105.  https://doi.org/10.1071/ZO06006 Google Scholar
  24. Clesceri L, Greenberg A, Trussell R (1992) Métodos normalizados para el análisis de aguas potables y residuales. (Díaz de Santos, Ed.) (10° en esp). Madrid.  https://doi.org/10.1007/s13398-014-0173-7.2
  25. Collins J (1979) Intrapopulation variation in the body size at metamorphosis and timing of metamorphosis in the bullfrog. Rana Catesbeiana Ecol 60(4):738–749.  https://doi.org/10.2307/1936611 Google Scholar
  26. Costa H (1967) Avoidance of anoxic water by tadpoles of Rana temporaria. Hydrobiol 30(3–4):374–384.  https://doi.org/10.1007/BF00964023 Google Scholar
  27. Costantini D (2014) Oxidative stress and hormesis in evolutionary ecology and physiology. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-54663-1
  28. Crites R, Tchobanoglous G (2000). Sistemas de manejo de aguas residuales: para núcleos pequeños y descentralizados. MCGRAW-HILL, Ed., ColombiaGoogle Scholar
  29. Dinius S (1972) Social accounting system for evaluating water resources. Water Resour Res 8(5):1159–1177.  https://doi.org/10.1029/WR008i005p01159 Google Scholar
  30. Duellman W, Trueb L (1994). Amphibians: biology of amphibians. J. H. U. Press, Ed., Vol. xxi, BaltimoreGoogle Scholar
  31. Fagotti A, Morosi L, Di Rosa I et al. (2005) Bioaccumulation of organochlorine pesticides in frogs of the Rana esculenta complex in central Italy. Amphib -Reptil 26(1):93–104.  https://doi.org/10.1163/1568538053693297 Google Scholar
  32. Fernández Portela J (2013) La evolución reciente del sector vitivinícola internacional. GeoGraphos. Rev Dig Estud Geog Cienc Soc 4:173–194.  https://doi.org/10.14198/GEOGRA2013.4.39 Google Scholar
  33. Ferrari L, De La Torre F, Demichelis S et al. (2005) Ecotoxicological assessment for receiving waters with the premetamorphic tadpoles acute assay. Chemosphere 59(4):567–575.  https://doi.org/10.1016/j.chemosphere.2005.01.045 Google Scholar
  34. Finney D (1952) Probit analysis: A statistical treatment of the sigmoid response curve (Second Edn). Camb. Univ. Press, Great BritainGoogle Scholar
  35. Gallo-Delgado S, Palacio-Baena J, Gutiérrez C (2006) Efectos del insecticida clorpirifos sobre la tasa de crecimiento y la metamorfosis de Smilisca phaeota (Cope, 1862) (Anura: Hylidae) Actual Biol 28(84):51–58.http://scienti.colciencias.gov.co:8084/publindex/docs/articulos/0304-3584/3/87.pdfGoogle Scholar
  36. García L, Pérez J, Riquelme M et al. (2008) Depuración simbiótica: una nueva tecnología biológica para la depuración de aguas residuales del sector de conservas vegetales. Tecnol Agua 303(28):48–54. Retrieved from 0211-8173Google Scholar
  37. González G, Navarro A, Borbón L et al. (2003) Caracterización química de efluentes de bodegas, Mendoza (Argentina). Rev Fac Cienc Agrar 1(35):99–105Google Scholar
  38. Gosner K (1960) A simplified table for staging anuran embryos larvae with notes on identification. Herpetol 16(3):183–190.  https://doi.org/10.2307/3890061 Google Scholar
  39. Goswami G, Sengupta S, Baruah B (2013) Effect of pollution on growth and development of some of the larval stages of Duttaphrynus melanostictus (Schneider 1799). Clar Int Multidiscip J 2(2):38–41Google Scholar
  40. Gross J, Johnson P, Prahl L et al. (2009) Critical period of sensitivity for effects of cadmium on frog growth and development. Environ Toxicol Chem 28(6):1227–1232.  https://doi.org/10.1897/08-205.1 Google Scholar
  41. Harris M, Chora L, Bishop C et al. (2000) Species- and age-related differences in susceptibility to pesticide exposure for two amphibians, Rana pipiens, and Bufo americanus. Bull Environ Contam Toxicol 64(2):263–270.  https://doi.org/10.1007/s001289910039 Google Scholar
  42. Hatch A, Blaustein A (2000) Combined effects of UV-B, nitrate, and low pH reduce the survival and activity level of larval cascades frogs (Rana cascadae). Arch Environ Contam Toxicol 39(4):494–499.  https://doi.org/10.1007/s002440010132 Google Scholar
  43. Hayes T, Case P, Chui S et al. (2006) Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact? Environ Health Perspect, 114(S- 1:40–50.  https://doi.org/10.1289/ehp.8051 Google Scholar
  44. Henao Muñoz L, Bernal Bautista M (2011) Tolerancia al pH en embriones y renacuajos de cuatro especies de anuros colombianos. Rev Acad Colomb Cienc 35(134):105–110Google Scholar
  45. James S, Little E (2003) The effects of chronic cadmium exposure on American toad (Bufo americanus) tadpoles. Environ Toxicol Chem 22(2):377–380.  https://doi.org/10.1897/1551-5028(2003)022<0377:TEOCCE>2.0.CO;2 Google Scholar
  46. Jayawardena U, Rajakaruna R, Navaratne A (2010) Toxicity of agrochemicals to common hourglass tree frog (Polypedates cruciger) in acute and chronic exposure International J Agr Biol 12(5):641–648Google Scholar
  47. Ji K, Kim Y, Oh S et al. (2008) Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid on freshwater macroinvertebrates (Daphnia magna and Moina macrocopa) and fish (Oryzias latipes). Environ Toxicol Chem 27(10):2159–2168.  https://doi.org/10.1897/07-523.1 Google Scholar
  48. Jofre M, Karasov W (1999) Direct effect of ammonia on three species of north American anuran amphibians. Environ Toxicol Chem 18(8):1806–1812.  https://doi.org/10.1897/1551-5028(1999)018<1806:DEOAOT>2.3.CO;2 Google Scholar
  49. Jonsson C, Toledo M (1993) Acute toxicity of endosulfan to the fish Hyphessobrycon bifasciatus and Brachydanio rerio. Arch Environ Contam Toxicol 24(2):151–155.  https://doi.org/10.1007/BF01141341 Google Scholar
  50. Keselman D (2002) Thesis. Efectos del plomo sobre la embriogénesis y la eclosión larval de Chasmagnatus granulata (Decapoda, Brachyura). Universidad de ConcepciónGoogle Scholar
  51. Klaassen C (1996). Toxicology: the basic science of poisons. In: Klaassen CD, (ed) NewYork: McGraw-HilGoogle Scholar
  52. Lajmanovich R, Izaguirre M, Casco V (1998) Environmental contamination and toxicology alteration of leopard frog (Rana pipiens) metamorphosis by the herbicide acetochlor. Arch Environ Contam Toxicol 34(4):364–369.  https://doi.org/10.1007/s002449900331 Google Scholar
  53. Lajmanovich R, Peltzer P, Martinuzzi C et al. (2018) Acute toxicity of colloidal silicon dioxide nanoparticles on amphibian larvae: emerging environmental concern. Int J Environ Res 12(3):269–278.  https://doi.org/10.1007/s41742-018-0089-8 Google Scholar
  54. Malandra L, Wolfaardt G, Zietsman A et al. (2003) Microbiology of a biological contactor for winery wastewater treatment. Water Res 37(17):4125–4134.  https://doi.org/10.1016/S0043-1354(03)00339-7 Google Scholar
  55. Mitsch W, Gosselink J (2015). Wetlands. Aging (Fifth Edn). John Wiley & Sons, ltd.  https://doi.org/10.1017/CBO9781107415324.004
  56. Mitsch W, Gosselink J (2000) The value of wetlands: Importance of scale and landscape setting. Ecol Econ 35(1):25–33.  https://doi.org/10.1016/S0921-8009(00)00165-8 Google Scholar
  57. Monge A, Gutiérrez-Barquín M (2001) Estrategias de minimización de vertidos en el sector agroalimentario. Aliment Equipo Tecnol 20(161):95–102Google Scholar
  58. Mosse K, Patti A, Christen E et al. (2011) Review: Winery wastewater quality and treatment options in. Aust Aust J Grape Wine Res 17(2):111–122.  https://doi.org/10.1111/j.1755-0238.2011.00132.x Google Scholar
  59. Muñoz-Escobar E, Palacio-Baena J (2010) Efectos del cloruro de mercurio (HgCl2) sobre la sobrevivencia y crecimiento de renacuajos de Dendrosophus bogerti Actual Biol 32(93):189–197. https://aprendeenlinea.udea.edu.co/revistas/index.php/actbio/article/viewFile/13814/12258Google Scholar
  60. Natale G (2006) Thesis: Análisis ecotoxicológico de una comunidad de anuros de la región pampeana: efecto del Cr [VI] sobre embriones y larvas de distintas especies de una taxocomunidad. Universidad Nacional de la PlataGoogle Scholar
  61. Natale G, Basso N, Ronco A (2000) Effect of Cr(VI) on early life stages of three species of hylid frogs (Amphibia, Anura) from South America. Environ Toxicol 15(5):509–512.  https://doi.org/10.1002/1522-7278(2000)15:5<509::AID-TOX21>3.0.CO;2-S Google Scholar
  62. Nimmo D, Boraas M (1982) Mysids in toxicity testing -a review. In: Morgan M(ed.) Ecology of Mysidacea (Development. Dr W. Junk Publishers, Netherlands pp 171–178.  https://doi.org/10.1007/978-94-009-8012-9
  63. Nishisaka N, Kishimoto T (1994) Sensitivity of immature regenerating proximal tubular cells in rabbit kidney to mercuric chloride--a light and electron microscopic analysis. Nihon Jinzo Gakkai Shi 36(4):298–306.  https://doi.org/10.14842/jpnjnephrol1959.36.298 Google Scholar
  64. Oliva J (2007) Tratamientos de residuos en bodegas. Virtual Pro Proc Ind, 1–9. https://www.revistavirtualpro.com/biblioteca/tratamientos-de-residuos-de-bodegas-
  65. Omer A (2008) Energy, environment and sustainable development. Renew Sustain Energy Rev.  https://doi.org/10.1016/j.rser.2007.05.001
  66. Pawlisz A, Kent R, Schneider U et al. (1997) Canadian water quality guidelines for chromium. Environ Toxicol Water Qual 12(2):123–183.  https://doi.org/10.1002/(SICI)1098-2256(1997)12:2<123::AID-TOX4>3.0.CO;2-A Google Scholar
  67. Pellón A, Benítez F, Frades J et al. (2003) Empleo de microalga Scenedesmus obliquas en la eliminación de cromo presente en aguas residuales galvánicas. Rev De Metal 39(1):9–16.  https://doi.org/10.3989/revmetalm.2003.v39.i1.312 Google Scholar
  68. Peltzer P, Lajmanovich R, Sanchez-Hernandez J et al. (2008) Effects of agricultural pond eutrophication on survival and health status of Scinax nasicus tadpoles. Ecotoxicol Environ Saf 70(1):185–197.  https://doi.org/10.1016/j.ecoenv.2007.06.005 Google Scholar
  69. Pérez-Coll C, Herkovits J (1996) Stage-dependent uptake of cadmium by Bufo arenarum embryos. Bull Environ Contam Toxicol 56(4):663–669.  https://doi.org/10.1007/s001289900097 Google Scholar
  70. Pierce B (1985) Acid tolerance in amphibians. BioSci 35(4):239–243.  https://doi.org/10.2307/1310132 Google Scholar
  71. Power T, Clark K, Harfenist A et al. (1989) A Review and evaluation of the amphibian toxicological literature. Technical Report Series, Canadian Wildlife Service, CanadáGoogle Scholar
  72. Prieto A, Fajer E, Vinjoy M et al. (1986) Monogeneos parásitos de las especies de peces exóticas. Ministerio de la Industria Pesquera (MIP). Vol. 11 (26). CubaGoogle Scholar
  73. Prodanov M, Cobo Reuters R (2004) Impacto ambiental de la industria vinícola (I). Aliment Equipos Tecnol 186:97–100Google Scholar
  74. Prokić M, Borković-Mitić S, Krizmanić I et al. (2016) Bioaccumulation and effects of metals on oxidative stress and neurotoxicity parameters in the frogs from the Pelophylax esculentus complex. Ecotoxicol 25(8):1531–1542.  https://doi.org/10.1007/s10646-016-1707-x Google Scholar
  75. Rai V, Mehrotra S (2008) Chromium-induced changes in ultramorphology and secondary metabolites of Phyllanthus amarus Schum & Thonn. - An hepatoprotective plant. Environ Monit Assess 147(1–3):307–315.  https://doi.org/10.1007/s10661-007-0122-4 Google Scholar
  76. Read J, Tyler M (1994) Natural levels of abnormalities in the trilling frog (Neobactrachus centralis) at the Olympic Dam mine. Bull Environ Contam Toxicol 53(1):25–31.  https://doi.org/10.1007/BF00205134 Google Scholar
  77. Relyea R (2005) The lethal impacts of Roundup on aquatic and terrestrial amphibians. Ecol Appl 15(4):1118–1124.  https://doi.org/10.1890/04-1291 Google Scholar
  78. Reyes M, Hondal O, Hernández J (2003) Toxicidad aguda del herbicida químico Glifosan en larvas de la rana cubana: Osteopilus septentrionalis Rev Toxicol En Línea 16:34–45. https://www.sertox.com.ar/modules.php?name=Content&pa=showpage&pid=523Google Scholar
  79. Rios-López N (2008) Effects of increased salinity on tadpoles of two anurans from a Caribbean coastal wetland in relation to their natural abundance. Amphib –Reptilia 29(1):7–18.  https://doi.org/10.1163/156853808783431451 Google Scholar
  80. Rodríguez R, Echegaray M, Palacios C et al (2013) Alternativa innovativa de un sistema de tratamiento de efluentes vinícolas: modelado matemático. Rev Cient Ing Des 31(1):105–119.http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=91534815&lang=es&site=ehost-liveGoogle Scholar
  81. Rondón-Barragán I, Ramírez-Duarte W, Eslava-Mocha P (2007) Evaluación de los efectos tóxicos y concentración letal 50 del surfactante Cosmoflux® 411F sobre juveniles de cachama blanca (Piaractus brachypomus) Rev Colomb Cienc Pecu 20(4):431–446. http://dialnet.unirioja.es/descarga/articulo/2544475.pdfGoogle Scholar
  82. Rouse J, Bishop C, Struger J (1999) Nitrogen pollution: an assessment of its threat to amphibian survival. Environ Health Perspect 107(10):799–803.  https://doi.org/10.1289/ehp.99107799 Google Scholar
  83. Sanabria E, Quiroga L, Acosta J (2007) Sitios de ovoposición y esfuerzo reproductivo en Chaunus arenarum (Anura: Bufonidae) en el desierto del Monte, Argentina Rev Esp Herpet 21:49–53. https://dialnet.unirioja.es/servlet/articulo?codigo=2877435Google Scholar
  84. Sandoval M (2008) Efectos producidos por el biocida Carbofurán® sobre larvas de Physalaemus biligonigerus. Resultados preliminares. Rev Anat Comp 3(41):1–3Google Scholar
  85. Scott G, Crunkilton R (2000) Acute and chronic toxicity of nitrate to fathead minnows (Pimephales promelas, Ceriodaphnia dubia, and Daphnia magna). Environ Toxicol Chem 19(12):2918–2922.  https://doi.org/10.1002/etc.5620191211 Google Scholar
  86. Shenoy K, Cunningham B, Renfroe J et al. (2009) Growth and survival of northern leopard frog (Rana pipiens) tadpoles exposed to two common pesticides. Environ Toxicol Chem 28(7):1469–1474.  https://doi.org/10.1897/08-306.1 Google Scholar
  87. Smith D (1987) Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecol 68(2):344–350.  https://doi.org/10.2307/1939265 Google Scholar
  88. Smith G (1997) The effects of aeration on amphibian larval growth: an experiment with bullfrog tadpoles. Transactions of the Nebraska Academy of Sciences, 24, 63–66. http://digitalcommons.unl.edu/tnas%5Cn or http://digitalcommons.unl.edu/tnas/74
  89. Smith G, Temple K, Dingfelder H et al. (2006) Effects of nitrate on the interactions of the tadpoles of two ranids (Rana clamitans and R. catesbeiana). Aquat Ecol 40(1):125–130.  https://doi.org/10.1007/s10452-005-9015-1 Google Scholar
  90. Sponza D (2003) Application of toxicity tests into discharges of the pulp-paper industry in Turkey. Ecotoxicol Environ Saf 54(1):74–86.  https://doi.org/10.1016/S0147-6513(02)00024-6 Google Scholar
  91. Tattersall G, Boutilier R (1999) Behavioral oxy-regulation by cold-submerged frogs in heterogeneous oxygen environments. Can J Zool 77(6):843–850.  https://doi.org/10.1139/z99-049 Google Scholar
  92. Team R Core (2015). R: A language and environment for statistical computing. R Foundation for StatisticalComputing, Vienna, Austria. URL http://www.R-project.org/Google Scholar
  93. United States Environmental Protection Agency (2002) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. 4 edition. United States Environmental Protection Agency, United States of America. https://doi.org/http://www.dep.state.fl.us/water/wastewater/docs/ctf.pdf
  94. Unrine J, Jagoe C, Hopkins W et al. (2004) Adverse effects of ecologically relevant dietary mercury exposure in southern leopard frog (Rana sphenocephala) larvae. Environ Toxicol Chem 23(12):2964–2970.  https://doi.org/10.1897/03-696.1 Google Scholar
  95. Vallee B, Ulmer D (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41(1):91–128.  https://doi.org/10.1146/annurev.bi.41.070172.000515 Google Scholar
  96. Vighi M, Altenburger R, Arrhenius A et al. (2003) Water quality objectives for mixtures of toxic chemicals: problems and perspectives. Ecotoxicol Environ Saf 54:139–150.  https://doi.org/10.1016/S0147-6513(02)00047-7 Google Scholar
  97. Vivas Agrafojo D, Fernández Sánchez M, Hernández Pacheco M et al. (2008) Estudio sobre la contaminación real producida por bodegas y almazaras en diez municipios de Extremadura (Fundación Biodiversidad). ExtremaduraGoogle Scholar
  98. Wake D (1991) Declining amphibian populations. Sci 253(5022):860–860.  https://doi.org/10.1126/science.253.5022.860 Google Scholar
  99. Wan Ngah W, Kamari A, Fatinathan S et al. (2006) Adsorption of chromium from aqueous solution using chitosan beads. Adsorpt 12(4):249–257.  https://doi.org/10.1007/s10450-006-0501-0 Google Scholar
  100. Wassersug R (1976) A procedure for differential staining of cartilage and bone in whole formalin-fixed vertebrates. Biotechn Histochem 51(2):131–134.  https://doi.org/10.3109/10520297609116684 Google Scholar
  101. Werner E (1986) Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am Nat 128(3):319–341.  https://doi.org/10.1086/284565 Google Scholar
  102. Yaman O, Dalbayrak S (2014) Kyphosis and review of the literature. Türk Neurosurg 24(4):455–465.  https://doi.org/10.5137/1019-5149.JTN.8940-13.0 Google Scholar
  103. Zar J (1999) Biostatistical analysis. Pearson Education India, IndianGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Argentino de Investigaciones en Zonas Áridas – CCT Mendoza – CONICETMendozaArgentina
  2. 2.Facultad de IngenieríaUniversidad Nacional de San JuanSan JuanArgentina
  3. 3.Instituto de Ciencias BásicasUniversidad Nacional de San Juan – CONICETSan JuanArgentina
  4. 4.Facultad de Ciencias ExactasUniversidad Nacional de CuyoMendozaArgentina

Personalised recommendations