Advertisement

Comparative analysis of transcriptomic responses to sub-lethal levels of six environmentally relevant pesticides in Saccharomyces cerevisiae

  • Fátima N. Gil
  • Alina C. Gonçalves
  • Jörg D. Becker
  • Cristina A. Viegas
Article

Abstract

Accidental spills and misuse of pesticides may lead to current and/or legacy environmental contamination and may pose concerns regarding possible risks towards non-target microbes and higher eukaryotes in ecosystems. The present study was aimed at comparing transcriptomic responses to effects of sub-lethal levels of six environmentally relevant pesticide active substances in the Saccharomyces cerevisiae eukaryotic model. The insecticide carbofuran, the fungicide pyrimethanil and the herbicides alachlor, S-metolachlor, diuron and methyl(4-chloro-2-methylphenoxy)acetate were studied. Some are currently used agricultural pesticides, while others are under restricted utilization or banned in Europe and/or North America albeit being used in other geographical locations. In the present work transcriptional profiles representing genome-wide responses in a standardized yeast population upon 2 h of exposure to concentrations of each compound exerting equivalent toxic effects, i.e., inhibition of growth by 20% relative to the untreated control cells, were examined. Hierarchical clustering and Venn analyses of the datasets of differentially expressed genes pointed out transcriptional patterns distinguishable between the six active substances. Functional enrichment analyses allowed predicting mechanisms of pesticide toxicity and response to pesticide stress in the yeast model. In general, variations in transcript numbers of selected genes assessed by Real-Time quantitative reverse transcription polymerase chain reaction confirmed microarray data and correlated well with growth inhibitory effects. A possible biological relevance of mechanistic predictions arising from these comparative transcriptomic analyses is discussed in the context of better understanding potential modes of action and adverse side-effects of pesticides.

Keywords

Pesticide Sub-lethal Toxicogenomics Toxicity mechanisms Molecular response Saccharomyces cerevisiae 

Notes

Acknowledgements

We acknowledge financial support by grant UID/BIO/04565/2013 from Portuguese FCT (Fundação para a Ciência e Tecnologia) and grant LISBOA-01-0145-FEDER-007317 from POR Lisboa 2020 (Programa Operacional Regional de Lisboa 2020) awarded to iBB-Institute for Bioengineering and Biosciences, and by funds from FEDER (European Funds for Economic and Regional Development), COMPETE (Competitiveness Factors Operational Programme) and Portuguese National Funds through the FCT funded research project PTDC/AMB/64230/2006 (ended in 2011) and fellowship SFRH/BD/60933/2009 (for F.N.G., ended in 2014).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10646_2018_1929_MOESM1_ESM.pdf (2 mb)
Supplementary Material
10646_2018_1929_MOESM2_ESM.xlsx (72 kb)
Supplementary Material

References

  1. Abrantes N, Pereira R, Gonçalves F (2010) Occurrence of pesticides in water, sediments, and fish tissues in a lake surrounded by agricultural lands: concerning risks to humans and ecological receptors. Water Air Soil Pollut 212:77–88CrossRefGoogle Scholar
  2. Azizullah A, Richter P, Häder DP (2011) Comparative toxicity of the pesticides carbofuran and malathion to the freshwater flagellate Euglena gracilis. Ecotoxicology 20:1442–1454CrossRefGoogle Scholar
  3. Bocquené G, Bellanger C, Cadiou Y, Galgani F (1995) Joint action of combinations of pollutants on the acetylcholinesterase activity of several marine species. Ecotoxicology 4:266–279CrossRefGoogle Scholar
  4. Braconi D, Bernardini G, Santucci A (2016) Saccharomyces cerevisiae as a model in ecotoxicological studies: a post-genomics perspective. J Proteom 137:19–34CrossRefGoogle Scholar
  5. Cabral MG, Sá-Correia I, Viegas CA (2004) Adaptative responses in yeast to the herbicide 2-methyl-4-chlorophenoxy acetic acid at the level of intracellular pH homeostasis. J Appl Microbiol 96:603–612CrossRefGoogle Scholar
  6. Capiotti KM, Fazenda L, Nazario LR, Menezes FP, Kist LW, Bogo MR, Bonan CD (2013) Arginine exposure alters ectonucleotidase activities and morphology of zebrafish larvae (Danio rerio), Int J Devl Neurosci 31:75–81CrossRefGoogle Scholar
  7. Cascorbi I, Bittrich H, Ricklinkat J, Voss W, Seyfarth A, Forêt M (1993) Effects of a heterogenous set of xenobiotics on growth and plasma membranes of mammalian and fungal cell cultures. Ecotoxicol Environ Saf 26:113–126CrossRefGoogle Scholar
  8. Cavallaro RA, Fuso A, Nicolia V, Scarpa S (2010) S-adenosylmethionine prevents oxidative stress and modulates glutathione metabolism in TgCRND8 mice fed a B-vitamin deficient diet. J Alzheimer Dis 20:997–1002CrossRefGoogle Scholar
  9. Chelinho S, Lopes I, Natal-da-Luz T, Domene X, Nunes MET, Espíndola ELG, Ribeiro R, Sousa JP (2012) Integrated ecological risk assessment of pesticides in tropical ecosystems: a case study with carbofuran in Brazil. Environ Toxicol Chem 31:437–445CrossRefGoogle Scholar
  10. Chirnside AEM, Ritter WF, Radosevich M (2007) Isolation of a selected microbial consortium from a pesticide mix-load site soil capable of degrading the herbicides atrazine and alachlor. Soil Biol Biochem 39:3056–3065CrossRefGoogle Scholar
  11. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS, Simison M, Weng S, Wong ED (2012) Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res 40:D700–D705. Database issueCrossRefGoogle Scholar
  12. Coleman MD, Neil JDO, Woehrling EK, Bate O, Ndunge A, Hill EJ, Menach A, Reiss CJ (2012) A preliminary investigation into the impact of a pesticide combination on human neuronal and glial cell lines in vitro. PLoS ONE 7:e42768CrossRefGoogle Scholar
  13. Coleman S, Linderman R, Hodgson E, Rose RL (2000) Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes. Environ Health Perspect 108:1151–1157Google Scholar
  14. DeLorenzo ME, Danese LE, Baird TD (2013) Influence of increasing temperature and salinity on herbicide hoxicity in estuarine phytoplankton. Environ Toxicol 28:359–371CrossRefGoogle Scholar
  15. Domingues A, Barbisan LF, Martins PR, Spinardi-Barbisan AL (2011) Diuron exposure induces systemic and organ-specific toxicity following acute and sub-chronic exposure in male Wistar rats. Environ Toxicol Pharmacol 31:387–396CrossRefGoogle Scholar
  16. EC—European Community (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12August2013 amending directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the EU, L226 of 24.08.2013. http://data.europa.eu/eli/dir/2013/39/oj. Accessed 13 July 2017
  17. EC—European Community (2009) Regulation No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Official Journal of the EU, L309 of 24.11.2009. http://data.europa.eu/eli/reg/2009/1107/oj. Accessed 13 July 2017
  18. Eckermann C, Matthes B, Nimtz M, Reiser V, Lederer B, Böger P, Schröder J (2003) Covalent binding of chloroacetamide herbicides to the active site cysteine of plant type III polyketide synthases. Phytochemistry 64:1045–1054CrossRefGoogle Scholar
  19. Eisenkolb M, Zenzmaier C, Leitner E, Schneiter R (2002) A specific structural requirement for ergosterol in long-chain fatty acid synthesis mutants important for maintaining raft domains in yeast. Mol Biol Cell 13:4414–4428CrossRefGoogle Scholar
  20. Edwards SW, Tan YM, Villeneuve DL, Meek ME, McQueen CA (2016) Adverse outcome pathways—organizing toxicological information to improve decision making. J Pharmacol Exp Ther 356:170–181CrossRefGoogle Scholar
  21. Federico C, Motta S, Palmieri C, Pappalardo M, Librando V, Saccone S (2011) Phenylurea herbicides induce cytogenetic effects in Chinese hamster cell lines. Mutat Res 721:89–94CrossRefGoogle Scholar
  22. Fritz R, Lanen C, Chapeland-Leclerc F, Leroux P (2003) Effect of the anilinopyrimidine fungicide pyrimethanil to the cystathionine β-lyase of Botrytis cinerea. Pest Biochem Physiol 77:54–65CrossRefGoogle Scholar
  23. Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20:37–45CrossRefGoogle Scholar
  24. Gachotte D, Eckstein J, Barbuch R, Hughes T, Roberts C, Bard M (2001) A novel gene conserved from yeast to humans is involved in sterol biosynthesis. J Lipid Res 42:150–154Google Scholar
  25. Gasch AP, Werner-Washburne M (2002) The genomics of yeast responses to environmental stress and starvation. Funct Integr Genom 2:181–192CrossRefGoogle Scholar
  26. Genter MB, Warner BM, Medvedovic M, Sartor MA (2009) Comparison of rat olfactory mucosal responses to carcinogenic and non-carcinogenic chloracetanilides. Food Chem Toxicol 47:1051–1057CrossRefGoogle Scholar
  27. Geret F, Burgeot T, Haure J, Gagnaire B, Renault T, Communal PY, Samain JF (2011) Effects of low-dose exposure to pesticide mixture on physiological responses of the Pacific oyster (Crassostrea gigas) Environ Toxicol 28:689–699CrossRefGoogle Scholar
  28. Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56:1021–1032CrossRefGoogle Scholar
  29. Gil FN, Becker JD, Viegas CA (2014) Potential mechanisms underlying response to effects of the fungicide pyrimethanil from gene expression profiling in Saccharomyces cerevisiae. J Agric Food Chem 62:5237–5247CrossRefGoogle Scholar
  30. Gil FN, Belli G, Viegas CA (2017) The Saccharomyces cerevisiae response to stress caused by the herbicidal active substance alachlor requires the iron regulon transcription factor Aft1p. Environ Microbiol 19:485–499CrossRefGoogle Scholar
  31. Gil FN, Gonçalves AC, Jacinto MJ, Becker JD, Viegas CA (2011) Transcriptional profiling in Saccharomycescerevisiae relevant for predicting alachlor mechanisms of toxicity. Environ Toxicol Chem 30:2506–2518CrossRefGoogle Scholar
  32. Gil FN, Moreira-Santos M, Chelinho S, Pereira C, Feliciano JR, Leitão JH, Sousa JP, Ribeiro R, Viegas CA (2015) Suitability of a Saccharomyces cerevisiae-based assay to assess the toxicity of pyrimethanil sprayed soils via surface runoff: comparison with standard aquatic and soil toxicity assays. Sci Total Environ 505:161–171CrossRefGoogle Scholar
  33. Harabawy ASA, Ibrahim ATA (2014) Sublethal toxicity of carbofuran pesticide on the African catfish Clarias gariepinus (Burchell, 1822): hematological, biochemical and cytogenetic response. Ecotoxicol Environ Saf 103:61–67CrossRefGoogle Scholar
  34. Herrero E, Ros J, Bellí G, Cabiscol E (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780:1217–1235CrossRefGoogle Scholar
  35. Hernández-Moreno D, Pérez-López M, Soler F, Gravato C, Guilhermino L (2011) Effects of carbofuran on the sea bass (Dicentrarchus labrax L.): study of biomarkers and behaviour alterations. Ecotoxicol Environ Saf 74:1905–1912CrossRefGoogle Scholar
  36. Ihlaseh SM, Bailey KA, Hester SD, Jones C, Ren H, Cardoso APF, MLCS Oliveira, Wolf DC, de Camargo JLV (2011) Transcriptional profile of diuron-induced toxicity on the urinary bladder of male Wistar rats to inform mode of action. Toxicol Sci 122:330–338CrossRefGoogle Scholar
  37. Jiang B, Brown JL, Sheraton J, Fortin N, Bussey H (1994) A new family of yeast genes implicated in ergosterol synthesis is related to the human oxysterol binding protein. Yeast 10(3):341–353CrossRefGoogle Scholar
  38. Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH (2003) Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest Manag Sci 59:1101–1110CrossRefGoogle Scholar
  39. Kale VM, Miranda SR, Wilbanks MS, Meyer SA (2008) Comparative cytotoxicity of alachlor, acetochlor, and metolachlor herbicides in isolated rat and cryopreserved human hepatocytes. J Biochem Mol Toxicol 22:41–50CrossRefGoogle Scholar
  40. Kamboj SS, Kumar V, Kamboj A, Sandhir R (2008) Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure. Cell Mol Neurobiol 28:961–969CrossRefGoogle Scholar
  41. Kaplan CD, Kaplan J (2009) Iron acquisition and transcriptional regulation. Chem Rev 10:4536–4552CrossRefGoogle Scholar
  42. Kaur B, Khera A, Sandhir R (2012) Attenuation of cellular antioxidant defense mechanisms in kidney of rats intoxicated with carbofuran. J Biochem Mol Toxicol 26:393–398CrossRefGoogle Scholar
  43. Kim HJ, Rakwal R, Shibato J, Iwahashi H, Choi JS, Kim DH (2006) Effect of textile wastewaters on Saccharomycescerevisiae using DNA microarray as a tool for genome-wide transcriptomics analysis. Water Res 40:1773–1782CrossRefGoogle Scholar
  44. Kohrer K, Domdey H (1991) Preparation of high molecular weight RNA. Methods Enzymol 194:398–405CrossRefGoogle Scholar
  45. Kolaczowska A, Goffeau A (1999) Regulation of pleiotropic drug resistance in yeast. Drug Resist Updat 2:403–414CrossRefGoogle Scholar
  46. Lewis KA, Tzilivakis J, Warner D, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess 22:1050–1064CrossRefGoogle Scholar
  47. Lin SJ, Guarente L (2003) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15:241–246CrossRefGoogle Scholar
  48. Liu H, Ye W, Zhan X, Liu W (2006) A comparative study of rac- and S-metolachlor toxicity to Daphnia magna. Ecotoxicol Environ Saf 63:451–455CrossRefGoogle Scholar
  49. Mansano AS, Moreira RA, Pierozzi M, Oliveira TMA, Vieira EM, Rocha O, Regali-Seleghim MH (2016) Effects of diuron and carbofuran pesticides in their pure and commercial forms on Paramecium caudatum: the use of protozoan in ecotoxicology. Environ Pollut 213:160–172CrossRefGoogle Scholar
  50. Martin B, Chadwick W, Yi T, Park S-S, Lu D, Ni B, Gadkaree S, Farhang K, Becker KG, Maudsley S (2012) VENNTURE—A novel Venn diagram investigation tool for multiple pharmacological dataset analysis. PLoS ONE 7:e36911CrossRefGoogle Scholar
  51. Megharaj M, Pearson HW, Venkateswarlu K (1993) Toxicity of carbofuran to soil isolates of Chlorella vulgaris, Nostoc linckia and N. muscorum. Appl Microbiol Biotechnol 39:644–648CrossRefGoogle Scholar
  52. Milling RJ, Richardson CJ (1995) Mode of action of the anilino-pyrimidine fungicide pyrimethanil. 2. Effects on enzyme secretion in Botrytis cinerea. Pest Sci 45:43–48CrossRefGoogle Scholar
  53. Oosterhuis B, Vukman K, Vági E, Glavinas H, Jablonkai I, Krajcsi P (2008) Specific interactions of chloroacetanilide herbicides with human ABC transporter proteins. Toxicology 248:45–51CrossRefGoogle Scholar
  54. Papaefthimiou C, Cabral MDG, Mixailidou C, Viegas CA, Sá-Correia I, Theophilidis G (2004) Comparison of two screening bioassays, based on the frog sciatic nerve and yeast cells, for the assessment of herbicide toxicity. Environ Toxicol Chem 23:1211–1218CrossRefGoogle Scholar
  55. Peixoto FP, Lopes ML, Madeira VMC, Vicente JAF (2009) Toxicity of MCPA on non-green potato tuber calli. Acta Physiol Plant 31:103–109CrossRefGoogle Scholar
  56. Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A (2004) Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 20:559–591CrossRefGoogle Scholar
  57. Robinson MD, Grigull J, Mohammad N, Hughes TR (2002) FunSpec: a web-based cluster interpreter for yeast. BMC Bioinforma 3:35–39CrossRefGoogle Scholar
  58. Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Guldener U, Mannhaupt G, Munsterkotter M, Mewes HW (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32:5539–5545CrossRefGoogle Scholar
  59. Saha S, Dutta D, Karmakar R, Ray DP (2012) Structure-toxicity relationship of chloroacetanilide herbicides: relative impact on soil microorganisms. Environ Toxicol Pharmacol 34:307–314CrossRefGoogle Scholar
  60. Santos SC, Sá-correia I (2015) Yeast toxicogenomics: lessons from a eukaryotic cell model and cell factory. Curr Opin Biotechnol 33:183–191CrossRefGoogle Scholar
  61. Saxena PN, Gupta SK, Murthy RC (2014) Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida—a possible mechanism. Ecotoxicol Environ Saf 100:218–225CrossRefGoogle Scholar
  62. Schmalfuβ J, Matthes B, Knuth K, Böger P (2000) Inhibition of Acyl-CoA elongation by chloroacetamide herbicides in microsomes from leek seedlings. Pest Biochem Physiol 67:25–35CrossRefGoogle Scholar
  63. Seeland A, Oehlmann J, Müller R (2012) Aquatic ecotoxicity of the fungicide pyrimethanil: effect profile under optimal and thermal stress conditions. Environ Pollut 168:161–169CrossRefGoogle Scholar
  64. Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT (2018) A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mat 344:146–162CrossRefGoogle Scholar
  65. Swain E, Baudry K, Stukey J, McDonough V, Germann M, Nickels JT (2002) Sterol-dependent regulation of sphingolipid metabolism in Saccharomyces cerevisiae. J Biol Chem 277:26177–26184CrossRefGoogle Scholar
  66. Steinberg CEW, Stürzenbaum SR, Menzel R (2008) Genes and environment—striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci Total Environ 400:142–161CrossRefGoogle Scholar
  67. Tadonléké RD, Leberre B, Perreau F, Humbert JF (2009) Responses of lake bacterioplankton activities and composition to the herbicide diuron. Aquat Toxicol 94:103–113CrossRefGoogle Scholar
  68. Teixeira MC, Duque P, Sá-Correia I (2007) Environmental genomics: mechanistic insights into toxicity of and resistance to the herbicide 2,4-D. Trends Biotechnol 25:363–370CrossRefGoogle Scholar
  69. USEPA—United States Environmental Protection Agency (2009) National primary drinking water regulations. https://www.epa.gov/sites/production/files/2016-06/documents/npwdr_complete_table.pdf. Accessed 10 July 2017
  70. van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN (1995) The plasma membrane of Saccharomyces cerevisiae: structure, function and biogenesis. Microbiol Rev 59:304–322Google Scholar
  71. van Ravenzwaay B, Pigott G, Leibold E (2004) Absorption, distribution, metabolism and excretion of 4-chloro-2-methylphenoxyacetic acid (MCPA) in rats. Food Chem Toxicol 42:115–125CrossRefGoogle Scholar
  72. Vega FA, Covelo EF, Andrade ML (2007) Accidental organochlorine pesticide contamination of soil in Porrino, Spain. J Environ Qual 36:272–279CrossRefGoogle Scholar
  73. Verdisson S, Couderchet M, Vernet G (2001) Effects of procymidone, fludioxonil and pyrimethanil on two non-target aquatic plants. Chemosphere 44:467–474CrossRefGoogle Scholar
  74. Viegas CA, Cabral MG, Teixeira MC, Neumann G, Heipieper HJ, Sá-Correia I (2005) Yeast adaptation to 2,4-dichlorophenoxyacetic acid involves increased membrane fatty acid saturation degree and decreased OLE1 transcription. Biochem Biophys Res Commun 330:271–278CrossRefGoogle Scholar
  75. Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, YinY (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168CrossRefGoogle Scholar
  76. Yasokawa D, Iwahashi H (2010) Toxicogenomics using yeast DNA microarrays. J Biosci Bioeng 110:511–522CrossRefGoogle Scholar
  77. Yoo HS, Genbauffe FS, Cooper TG (1985) Identification of the ureidoglycolate hydrolase gene in the DAL gene cluster of Saccharomyces cerevisiae. Mol Cell Biol 5:2279–2288CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico (IST)Universidade de Lisboa (UL), Av Rovisco PaisLisboaPortugal
  2. 2.Instituto Gulbenkian de Ciência, Rua da Quinta Grande N°6OeirasPortugal
  3. 3.Department of Bioengineering, IST, UL, Av Rovisco PaisLisboaPortugal

Personalised recommendations