Advertisement

Ecotoxicology

, Volume 26, Issue 6, pp 792–801 | Cite as

Sublethal effects in Perinereis gualpensis (Polychaeta: Nereididae) exposed to mercury-pyrene sediment mixture observed in a multipolluted estuary

  • M. Díaz-JaramilloEmail author
  • K. S. B Miglioranza
  • P. Carriquiriborde
  • D. Marino
  • C. N Pegoraro
  • G. Valenzuela
  • R. Barra
Article

Abstract

Sediment-living organisms can be subjected to a multi-pollution condition due to an increase in the diversity of contaminants. Sediment mixtures of Mercury (Hg) and some polycyclic aromatics hydrocarbons like Pyrene (Pyr) are common in heavily industrialized coastal zones. In the present study, greater than (>) and less than (<) probable effect concentration levels (PELs) of Hg and Pyr were assessed using spiked sediments in order to determine combined (Hg + Pyr) effects in uptake, metabolization and oxidative balance in the polychaete Perinereis gualpensis at short and medium-term exposure. Hg + Pyr significantly influenced the uptake/kinetics of Hg and Pyr metabolite 1-OH-pyrene in polychaete tissues during the exposure time compared with separate treatments of each analyte (p < 0.05). Both the Hg-only and Pyr-only exposures significantly influenced both enzymatic and non-enzymatic responses respect to control groups (p < 0.05). The Hg-only treatment showed the worst scenario related to the activation and subsequent inhibition of glutathione S- transferase (GST) and peroxidase (GPx) activities, high levels of Thiol-groups (SH-groups), low antioxidant capacity (ACAP) and enhanced lipid peroxidation (TBARS) in the last days of exposure (p < 0.05). In contrast, ragworms exposed to Hg + Pyr showed a significant increase in both enzymatic and non-enzymatic activity during the first days of exposure and the absence of lipid peroxidation during the whole experiment. Our results suggest different oxidative stress scenarios in P. gualpensis when exposed to >PEL Hg concentration with <PEL Pyr in sediments. Results also reveal the importance of the exposure time, endpoints involved as well as of the contaminant monitoring during the whole experiments in assessing the interactive effects of the contaminant mixture.

Keywords

Mercury Pyrene Mixture Oxidative stress Spiked sediments 

Notes

Acknowledgements

This article is part of Díaz-Jaramillo’s PhD thesis, supervised by R. Barra and funded by a PhD fellowship “Corporación Red Universitaria Cruz del Sur (Chile)”. FONDAP CRHIAM CONICYT CHILE 15130015 is also acknowledged. We would also like to thank Laboratorio Costero de Recursos Acuáticos-Calfuco, Claudio Bravo, José M. Monserrat, Gilberto Fillman, Sandor Mulsow, Alice Turner, Soraya Céspedes, Ana Araneda, Solange Jara, Francesca Mitton and Mariana Gonzalez for the support during the laboratory assays and field sampling. This study was partially funded by ANPCyT of Argentina (Dr. Pedro Carriquiriborde, PICT-1598).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Ahmad I, Oliveira M, Pacheco M, Santos MA (2005) Anguilla anguilla L. oxidative stress biomarkers responses to copper exposure with or without β-naphthoflavone pre-exposure. Chemosphere 61:267–275. doi: 10.1016/j.chemosphere.2005.01.069 CrossRefGoogle Scholar
  2. Almeida CMR, Mucha AP, Delgado MFC et al. (2008) Can PAHs influence Cu accumulation by salt marsh plants? Mar Environ Res 66:311–318. doi: 10.1016/j.marenvres.2008.04.005 CrossRefGoogle Scholar
  3. Almeida JR, Gravato C, Guilhermino L (2012) Challenges in assessing the toxic effects of polycyclic aromatic hydrocarbons to marine organisms: a case study on the acute toxicity of pyrene to the European seabass (Dicentrarchus labrax L.). Chemosphere 86:926–937. doi: 10.1016/j.chemosphere.2011.10.059 CrossRefGoogle Scholar
  4. Amado LL, Garcia ML, Ramos PB et al. (2009) A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity. Sci Total Environ 407:2115–2123. doi: 10.1016/j.scitotenv.2008.11.038 CrossRefGoogle Scholar
  5. American Public Health Association, American Water Works Association, Water Environment Federation (2012) Standard methods for the examination of water and wastewater. Stand Methods 741.  10.2105/AJPH.51.6.940-a
  6. Amiard-Triquet C, Rainbow PS (2009) Environmental assesment of estuarine ecosystems A case study. CRC press, Boca RatonCrossRefGoogle Scholar
  7. Banni M, Bouraoui Z, Clerandeau C et al. (2009) Mixture toxicity assessment of cadmium and benzo[a]pyrene in the sea worm Hediste diversicolor. Chemosphere 77:902–906. doi: 10.1016/j.chemosphere.2009.08.041 CrossRefGoogle Scholar
  8. Bouraoui Z, Banni M, Ghedira J et al. (2009) Evaluation of enzymatic biomarkers and lipoperoxidation level in Hediste diversicolor exposed to copper and benzo[a]pyrene. Ecotoxicol Environ Saf 72:1893–1898. doi: 10.1016/j.ecoenv.2009.05.011 CrossRefGoogle Scholar
  9. Bloom NS, Preus E (2003) Anoxic sediment incubations to assess the methylation potential of mercury contaminated solids. In: Tremblay H, Locat J, Galvez-Cloutier R (eds) Proceedings of the 2nd International Symposium on Contaminated Sediments; 2003 May 26-28, Quebec, Canada; p 331–336.Google Scholar
  10. Broerse M, Oorsprong H, Van Gestel CAM (2012) Cadmium affects toxicokinetics of pyrene in the collembolan Folsomia candida. Ecotoxicol 21:795–802. doi: 10.1007/s10646-011-0839-2 CrossRefGoogle Scholar
  11. Cachot J, Geffard O, Augagneur S et al. (2006) Evidence of genotoxicity related to high PAH content of sediments in the upper part of the Seine estuary (Normandy, France). Aquat Toxicol 79:257–267. doi: 10.1016/j.aquatox.2006.06.014 CrossRefGoogle Scholar
  12. CCME (Canadian Council of Ministers of the Environment) (2002) Canadian sediment quality guidelines for the protection of aquatic life: summary tables. Updated 2002. Canadian Environmental Quality Guidelines (1999). Canadian Council of Ministers of the Environment, WinnipegGoogle Scholar
  13. Colacevich A, Sierra MJ, Borghini F et al. (2011) Oxidative stress in earthworms short- and long-term exposed to highly Hg-contaminated soils. J Hazard Mater 194:135–143. doi: 10.1016/j.jhazmat.2011.07.091 CrossRefGoogle Scholar
  14. Davis A, Bloom NS, Que Hee SS et al. (1997) The environmental geochemistry and bioaccessibility of mercury in soils and sediments: a review. Risk Anal 17:557–569. doi: 10.1111/j.1539-6924.1997.tb00897.x CrossRefGoogle Scholar
  15. Díaz-Jaramillo M, Martins da Rocha A, Gomes V et al. (2011) Multibiomarker approach at different organization levels in the estuarine Perinereis gualpensis (Polychaeta; Nereididae) under chronic and acute pollution conditions. Sci Total Environ 410-411:126–135. doi: 10.1016/j.scitotenv.2011.09.007 CrossRefGoogle Scholar
  16. Díaz-Jaramillo M, Muñoz C, Rudolph I et al. (2013) Seasonal mercury concentrations and δ15N and δ13C values of benthic macroinvertebrates and sediments from a historically polluted estuary in south central Chile. Sci Total Environ 442:198–206. doi: 10.1016/j.scitotenv.2012.10.039 CrossRefGoogle Scholar
  17. Díaz-Jaramillo M, Sandoval N, Barra R et al. (2015) Spatio-temporal population and reproductive responses in Perinereis gualpensis (Polychaeta: Nereididae) from estuaries under different anthropogenic influences. Chem Ecol 1–12.  10.1080/02757540.2015.1022535
  18. Gauthier PT, Norwood WP, Prepas EE, Pyle GG (2014) Metal-PAH mixtures in the aquatic environment: A review of co-toxic mechanisms leading to more-than-additive outcomes. Aquat Toxicol 154:253–269. doi: 10.1016/j.aquatox.2014.05.026 CrossRefGoogle Scholar
  19. Giessing AMB, Mayer LM, Forbes TL (2003) Synchronous fluorescence spectrometry of 1-hydroxypyrene: a rapid screening method for identification of PAH exposure in tissue from marine polychaetes. Mar Environ Res 56:599–615. doi: 10.1016/S0141-1136(03)00045-X CrossRefGoogle Scholar
  20. Habig WH, Jakoby WB (1981) [51] Assays for differentiation of glutathione S-Transferases. Methods Enzymol 77:398–405. doi: 10.1016/S0076-6879(81)77053-8 CrossRefGoogle Scholar
  21. Hutchins C (2005) Geochemical Response of Cu, Zn & Cd Spiked sediment: A comparison of metal spiking procedures evaluated using whole sediment toxicity test. School of Enviornmental and Applied Sciences. Griffith University, Queensland, p 243, https://www120.secure.griffith.edu.au/rch/items/7697ff4c-be5e-1718-4891-f8ef013049d6/1/ Google Scholar
  22. Kopecka-Pilarczyk J, Correia AD (2009) Biochemical response in gilthead seabream (Sparus aurata) to in vivo exposure to pyrene and fluorene. J Exp Mar Bio Ecol 372:49–57. doi: 10.1016/j.jembe.2009.02.004 CrossRefGoogle Scholar
  23. Kovářová J, Svobodová Z (2009) Can thiol compounds be used as biomarkers of aquatic ecosystem contamination by cadmium? Interdiscip Toxicol 2:177–183. doi: 10.2478/v10102-009-0013-3 Google Scholar
  24. Luís LG, Guilhermino L (2012) Short-term toxic effects of naphthalene and pyrene on the common prawn (Palaemon serratus) assessed by a multi-parameter laboratorial approach: mechanisms of toxicity and impairment of individual fitness. Biomarkers 17:275–285. doi: 10.3109/1354750X.2012.666765 CrossRefGoogle Scholar
  25. Lund B-O, Miller DM, Woods JS (1993) Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem Pharmacol 45:2017–2024. doi: 10.1016/0006-2952(93)90012-L CrossRefGoogle Scholar
  26. MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31. doi: 10.1007/s002440010075 CrossRefGoogle Scholar
  27. Mai B-X, Fu J-M, Sheng G-Y et al. (2002) Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environ Pollut 117:457–474. doi: 10.1016/S0269-7491(01)00193-2 CrossRefGoogle Scholar
  28. Maria VL, Bebianno MJ (2011) Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo(a)pyrene and copper. Comp Biochem Physiol Part C Toxicol Pharmacol 154:56–63. doi: 10.1016/j.cbpc.2011.02.004 CrossRefGoogle Scholar
  29. Mason R, Bloom N, Cappellino S et al. (1998) Investigation of porewater sampling methods for mercury and methylmercury. Environ Sci Technol 32:4031–4040. doi: 10.1021/es980377t CrossRefGoogle Scholar
  30. Newman MC, Unger MA (2003) Fundamentals of Ecotoxicology, 2nd edn. Lewis Publishers, Inc, Boca Raton, FL, p 458Google Scholar
  31. Oakes KD, Van Der Kraak GJ (2003) Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat Toxicol 63:447–463CrossRefGoogle Scholar
  32. Oliveira M, Ribeiro A, Hylland K, Guilhermino L (2013) Single and combined effects of microplastics and pyrene on juveniles (0+group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Ecol Indic 34:641–647. doi: 10.1016/j.ecolind.2013.06.019 CrossRefGoogle Scholar
  33. Ouddane B, Mikac N, Cundy AB, et al (2008) A comparative study of mercury distribution and methylation in mudflats from two macrotidal estuaries: The Seine (France) and the Medway (United Kingdom). Appl Geochemistry 23:618–631. doi: 10.1016/j.apgeochem.2007.11.001
  34. Pozo K, Perra G, Menchi V et al. (2011) Levels and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Lenga Estuary, central Chile. Mar Pollut Bull 62:1572–1576. doi: 10.1016/j.marpolbul.2011.04.037 CrossRefGoogle Scholar
  35. Richardson BJ, Mak E, De Luca-Abbott SB et al. (2008) Antioxidant responses to polycyclic aromatic hydrocarbons and organochlorine pesticides in green-lipped mussels (Perna viridis): do mussels “integrate” biomarker responses? Mar Pollut Bull 57:503–514. doi: 10.1016/j.marpolbul.2008.02.032 CrossRefGoogle Scholar
  36. Rodrigues NR, Nunes MEM, Silva DGC et al. (2013) Is the lobster cockroach Nauphoeta cinerea a valuable model for evaluating mercury induced oxidative stress? Chemosphere 92:1177–1182. doi: 10.1016/j.chemosphere.2013.01.084 CrossRefGoogle Scholar
  37. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205. doi: 10.1016/0003-2697(68)90092-4 CrossRefGoogle Scholar
  38. Shen G, Lu Y, Hong J (2006) Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil. Ecotoxicol Environ Saf 63:474–480. doi: 10.1016/j.ecoenv.2005.01.009 CrossRefGoogle Scholar
  39. Sies H, Koch OR, Martino E, Boveris A (1979) Increased biliary glutathione disulfide release in chronically ethanol-treated rats. FEBS Lett 103:287–290. doi: 10.1016/0014-5793(79)81346-0 CrossRefGoogle Scholar
  40. Stoichev T, Amouroux D, Wasserman JC et al. (2004) Dynamics of mercury species in surface sediments of a macrotidal estuarine-coastal system (Adour River, Bay of Biscay). Estuar Coast Shelf Sci 59:511–521. doi: 10.1016/j.ecss.2003.10.007 CrossRefGoogle Scholar
  41. UNEP; IOC; IAEA. (1992) Determination of petroleum hydrocarbons in sediments. Ref Methods Mar Pollut Stud [S.1] 20:7Google Scholar
  42. UNEP (2013) Global mercury assessment 2013: Sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva, SwitzerlandGoogle Scholar
  43. USEPA. (1991) Method 245.5, mercury in sediments by cold vapor (CV/AAS). Revision 2.3. US Environmental Protection Agency Ofice of Research and Development, CincinnatiGoogle Scholar
  44. Vega-López A, Ayala-López G, Posadas-Espadas BP et al. (2013) Relations of oxidative stress in freshwater phytoplankton with heavy metals and polycyclic aromatic hydrocarbons. Comp Biochem Physiol A Mol Integr Physiol 165:498–507. doi: 10.1016/j.cbpa.2013.01.026 CrossRefGoogle Scholar
  45. Wang L, Pan L, Liu N et al. (2011) Biomarkers and bioaccumulation of clam Ruditapes philippinarum in response to combined cadmium and benzo[α]pyrene exposure. Food Chem Toxicol 49:3407–3417. doi: 10.1016/j.fct.2011.06.015 CrossRefGoogle Scholar
  46. Wu Y, Wang WX (2012) Thiol compounds induction kinetics in marine phytoplankton during and after mercury exposure. J Hazard Mater 217-218:271–278. doi: 10.1016/j.jhazmat.2012.03.024 CrossRefGoogle Scholar
  47. Yañez J, Guajardo M, Miranda C et al. (2013) New assessment of organic mercury formation in highly polluted sediments in the Lenga estuary, Chile. Mar Pollut Bull 73:16–23. doi: 10.1016/j.marpolbul.2013.06.015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. Díaz-Jaramillo
    • 1
    • 2
    Email author
  • K. S. B Miglioranza
    • 2
  • P. Carriquiriborde
    • 3
  • D. Marino
    • 3
  • C. N Pegoraro
    • 4
  • G. Valenzuela
    • 5
  • R. Barra
    • 1
  1. 1.Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales & Centro EULA-ChileUniversidad de ConcepciónConcepcionChile
  2. 2.IIMyC, UNMdP, CONICET, Laboratorio de Ecotoxicología y Contaminación AmbientalMar del PlataArgentina
  3. 3.Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias ExactasUniversidad Nacional de La Plata– CONICETLa PlataArgentina
  4. 4.Departamento de Química, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata-CONICETMar del PlataArgentina
  5. 5.Instituto de Ciencias Marinas y Limnológicas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile

Personalised recommendations