, Volume 25, Issue 6, pp 1160–1169 | Cite as

Trophic restructuring (Wieser 1953) of free-living nematode in marine sediment experimentally enriched to increasing doses of pharmaceutical penicillin G

  • Ahmed NasriEmail author
  • Soufiane Jouili
  • Fehmi Boufahja
  • Amor Hedfi
  • Ibtihel Saidi
  • Ezzeddine Mahmoudi
  • Patricia Aïssa
  • Naceur Essid
  • Beyrem Hamouda


Trophic structure of free living nematode from Bizerte lagoon was tested by a microcosmic study after 30 days of exposure with 5 increasing doses of pharmaceutical penicillin G (D1: 3 mg L−1, D2: 30 mg L−1, D3: 300 mg L−1, D4: 600 mg L−1, D5: 700 mg L−1). Results showed significant differences between nematode assemblages from undisturbed controls and those from penicillin G treatments. Selective deposit-feeders (1A) or nonselective deposit-feeders (1B), very abundant in the control microcosm, were significantly affected and their dominance declined significantly. Epistrate feeders (2A) were significantly gradual increase for all microcosms treated with penicillin G, appeared to be more tolerant to the antibiotic and to take advantage of the growing scarcity of other trophic groups. Compared to the control microcosms, omnivorous-carnivorous (2B) was found to be higher in all treated microcosms, with the exception of those treated with D5. Trophic index (Σθ2) was significantly reduced in all microcosms treated whereas trophic ratio 1B/2A appears to be insignificant.


Free-living nematodes Penicillin G Sediment pollution Pollution effect Population function Density dependence 



This work was funded by the Tunisian Ministry of Higher Education and Scientific Research. Special thanks are due to Dr. WASIM AHMAD, professor at the Department of Zoology Aligarh Muslim University, India, for correcting the English of this paper. We are also grateful to Prof. Pierre Vitiello of the Oceanography Institute of Marseille, France, for his assistance with nematode species identification.

Compliance with ethical standards

Conflicts of interest

I declare that there are no conflicts of interest.


  1. Austen MC, McEvoy AJ, Warwick RM (1994) The specificity of meiobenthic community responses to different pollutants: results from microcosm experiments. Mar Pollut Bull 28:557–563CrossRefGoogle Scholar
  2. Balbina N, Mariana PL, Juana MPV, Rafael B (2011) Anthropogenic perturbations in marine microbial communities. FEMS Microbiol Rev 35:275–298CrossRefGoogle Scholar
  3. Balsamo M, Albertelli G, Ceccherelli VU, Coccioni R, Colangelo MA, Curini-Galletti M, Danovaro R, D’Addabbo R, Leonardis C, Fabiano M, Frontalini F, Gallo M, Gambi C, Guidi L, Moreno M, Pusceddu A, Sandulli R, Semprucci F, Todaro MA, Tongiorgi P (2010) Meiofauna of the Adriatic Sea: current state of knowledge and future perspectives. Chem Ecol 26(1):45–63CrossRefGoogle Scholar
  4. Balsamo M, Semprucci F, Frontalini F, Coccioni R (2012) Meiofauna as a tool for marine ecosystem biomonitoring. In: Cruzado A (ed) Marine Ecosystems, vol 4. InTech Publisher, Rijeka, pp 77–104Google Scholar
  5. Besse JP, Latour JF, Garric J (2012) Anticancer drugs in surface waters. What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ Int 39:73–86CrossRefGoogle Scholar
  6. Beyrem H (1999) Ecologie des nématodes libres de deux milieux anthropiquement perturbés: la baie de Bizerte et le lac Ichkeul. Thèse doct. Fac. Sci, Bizerte 297 p Google Scholar
  7. Beyrem H, Aïssa P (2000) Les nématodes libres, organismes-sentinelles de l’évolution des concentrations d’hydrocarbures dans la baie de Bizerte (Tunisie). Cah Biol Mar 41:329–342Google Scholar
  8. Beyrem H, Mahmoudi E, Essid N, Hedfi A, Boufahja F, Aissa P (2007) Individual and combined effects of cadmium and diesel on a nematode community in a laboratory microcosm experiment. Ecotoxicol Environ Saf 68:412–418CrossRefGoogle Scholar
  9. Blome D, Schleider KH, Berman V (1999) Analysis of the small-scale spatial patterns of free-living marine nematodes from tidal flats in the East Frisian Wadden Sea. Mar Biol 133:717–726CrossRefGoogle Scholar
  10. Boucher G (1979) Les nématodes libres des sables fins infralittoraux: étude in situ et expérimentale de la communauté. Thèse doct. d’Etat, Univ. Paris-sud, centre d’Orsay, p 236Google Scholar
  11. Boucher G, Chamroux S, Riaux C (1984) Modification des caractéristiques physico chimiques et biologiques d’un sable sublittoral pollué par hydrocarbures. Marine Environ Res 12:1–23CrossRefGoogle Scholar
  12. Boufahja F, Hedfi A, Amorri J, Aïssa P, Beyrem H, Mahmoudi E (2011) Examination of the bioindicator potential of Oncholaimus campylocercoides (Oncholaimidae, Nematoda) from Bizerte bay (Tunisia). Ecol Ind 11(5):1139–1148CrossRefGoogle Scholar
  13. Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532CrossRefGoogle Scholar
  14. Bray JR, Curtis JT (1957) An ordination of the upland forest communties of southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  15. Brooks BW, Foran CM, Richards SM, Weston J, Turner PK, Stanley JK, Solomon KR, Slattery M, La Point TW (2003) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142:169–183CrossRefGoogle Scholar
  16. Burton SM, Rundle SD, Jones MB (2001) The relationship between trace metal contamination and stream meiofauna. Environ Pollut 111:159–167CrossRefGoogle Scholar
  17. Cheikh M, Derouiche A, Driss MR (2002) Détermination par (CPG-ECD) des résidus de pesticides organochlorés dans les sédiments de la lagune de Bizerte. Bull Inst Nat Sci Technol Mer 7:160–163Google Scholar
  18. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  19. Clarke KR, Gorley RN (2001) PRIMER v5: user manual/tutorial. PRIMER-E, Plymouth, p 91Google Scholar
  20. Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth, p 164Google Scholar
  21. Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194CrossRefGoogle Scholar
  22. Cooper ER, Siewicki TC, Phillips K (2008) Preliminary risk assessment database and risk ranking of pharmaceuticals in the environment. Sci Total Environ 398:26–33CrossRefGoogle Scholar
  23. Costanzo SD, Murby J, Bates J (2005) Ecosystem response to antibiotics entering the aquatic environment. Mar Pollut Bull 51:1–4CrossRefGoogle Scholar
  24. Cunningham VL, Binks SP, Michael J, Olson MJ (2009) Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment. Regul Toxicol Pharmacol 53:39–45CrossRefGoogle Scholar
  25. Danovaro R (2000) Benthic microbial loop and meiofaunal response to oil-induced disturbance in coastal sediments: a review. Int J Environ Pollut 13:380–391CrossRefGoogle Scholar
  26. Danovaro R, Fabiano M, Vincx M (1995) Meiofauna response to the Agip Abruzzo oil spill in subtidal sediments of the Ligurian Sea. Mar Pollut Bull 39:133–145CrossRefGoogle Scholar
  27. Derouiche A, Sanda YG, Driss MR (2004) Polychlorinated biphenyls in sediments from Bizerte lagoon, Tunisia. Bull Environ Contam Toxicol 73:810–817CrossRefGoogle Scholar
  28. Farré M, Pérez S, Kantiani L, Barceló D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends Anal Chem 27:991–1007CrossRefGoogle Scholar
  29. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159CrossRefGoogle Scholar
  30. Ferrari B, Mons R, Vollat B, Fraysse B, Paxeus N, Lo Giudice R, Pollio A, Garric J (2004) Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ Toxicol Chem 23:1344–1354CrossRefGoogle Scholar
  31. Gray JS, Clarke KR, Warwick RM, Hobbs G (1990) Detection of initial effects of pollution on marine benthos: an example from the Ecofsk and Eldfisk oilfields, North Sea. Mar Ecol Prog Ser 66:285–299CrossRefGoogle Scholar
  32. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Ocean Mar Biol 23:399–489Google Scholar
  33. Hellwig-Armonies M, Armonies W, Lorenzen S (1991) The diet of Enoplus brevrs (Nematoda) in a supralittoral sait marsh of the North Sea. Helgoltinder Meeresunters 45:357–372CrossRefGoogle Scholar
  34. Hermi M, Mahmoudi E, Beyrem H, Aissa P, Essid N (2009) Responses of a free-living marine nematode community to mercury contamination: results from microcosm experiments. Arch Environ Contam Toxicol 56:426–433CrossRefGoogle Scholar
  35. Juario JV (1975) Nematode species composition and seasonal fluctuation of a sublittoral meiofauna community in the German Bight. Veröff Inst Meersforsch Bremerh 15:283–337Google Scholar
  36. Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364CrossRefGoogle Scholar
  37. Kleiner DK, Kat SE, Ward PML (2007) Development of in vitro antimicrobial resistance in bacteria exposed to residue level exposures of antimicrobial drugs, pesticides and veterinary drugs. Chemotherapy 53:132–136CrossRefGoogle Scholar
  38. Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. J Environ Manage 90:2354–2366CrossRefGoogle Scholar
  39. Kümmerer K, Al-Ahmad A (2004) Biodegradability of the anti-tumour agents 5-fluorouracil, cytarabine and gemcitabine: impact of the chemical structure and synergistic toxicity with hospital effluents. Acta Hydrochim Hydrobiol 25:166–172CrossRefGoogle Scholar
  40. Kümmerer K, Al-Ahmad A (2010) Estimation of the cancer risk to humans resulting from the presence of cyclophosphamide and ifosfamide in surface water. Environ Sci Pollut Res 17:486–496CrossRefGoogle Scholar
  41. La Rosa T, Mirto S, Mazzola A, Danovaro R (2001) Differential responses of benthic microbes and meiofauna to fish-farm disturbance in coastal sediments. Environ Pollut 112:427–434CrossRefGoogle Scholar
  42. Lambshead PJD (1986) Sub-catastrophic sewage contamination as revealed by marine nematode faunal analysis. Mar Ecol Prog Ser 29:247–260CrossRefGoogle Scholar
  43. Lorenzen S (1974) Die Nematodenfauna der sublittoralen region der Deutschen Bucht, inbesondere im Titan - Abwassergebiet bei Helgoland. Veröff Inst Meersforsch Bremer 14:305–327Google Scholar
  44. Louiz I, Kinani S, Gouze ME, Ben-Attia M, Menif D, Bouchonnet S, Porcher JM, Ben-Hassine OK, Ait-Aissa S (2008) Monitoring of dioxin-like, estrogenic and anti-androgenic activities in sediments of the Bizerta lagoon (Tunisia) by means of in vitro cell-based bioassays: contribution of low concentrations of polynuclear aromatic hydrocarbons (PAHs). Sci Total Environ 402:318–329CrossRefGoogle Scholar
  45. Mahmoudi E, Beyrem H, Aïssa P, Vitiello P (2003) Structure des peuplements de nématodes dans la lagune de Ghar El Melh (Tunisie) en hiver 2000. Marine Life 13:31–43Google Scholar
  46. Mahmoudi E, Essid N, Beyrem H, Hedfi A, Boufahja F, Vitiello P, Aïssa P (2005) Effects of hydrocarbon contamination on a free-living marine nematode community: results from Microcosm Experiments. Mar Pollut Bull 50:1197–1204CrossRefGoogle Scholar
  47. Mahmoudi E, Essid N, Beyrem H, Hedfi A, Boufahja F, Vitiello P, Aïssa P (2007) Individual and combined effects of lead and zinc on a free-living marine nematode community: results from microcosm experiments. J Exp Mar Biol Ecol 343:317–326CrossRefGoogle Scholar
  48. Mazzola A, Mirto S, La Rosa T, Fabiano M, Danovaro R (2000) Fish-farming effects on benthic community structure in coastal sediments: analysis of meiofaunal recovery. ICES J Mar Sci 57:1454–1461CrossRefGoogle Scholar
  49. Millward RN, Carman KR, Fleeger JW, Gambrell RP, Portier R (2004) Mixtures of metals hydrocarbons elicit complex responses by a benthic invertebrate community. J Exp Mar Biol Ecol 310:115–130CrossRefGoogle Scholar
  50. Mirto S, La Rosa T, Gambi C, Danovaro R, Mazzola A (2002) Nematode community response to fish-farm impact in the western Mediterranean. Environ Pollut 116:203–214CrossRefGoogle Scholar
  51. Moens T, Vincx M (1997) Observations on the feeding ecology of estuarine nematodes. J Mar Biol Assoc UK 77:211–227CrossRefGoogle Scholar
  52. Moreno M, Semprucci F, Vezzulli L, Balsamo M, Fabiano M, Albertelli G (2011) The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecol Ind 11:328–336CrossRefGoogle Scholar
  53. Mzoughi N, Lespes G, Bravo TM, Dachraoui M, Potin-Gautier M (2005) Organotin speciation in Bizerte lagoon (Tunisia). Sci Total Environ 349:211–222CrossRefGoogle Scholar
  54. Nasri A, Jouili S, Boufahja F, Hedfi A, Mahmoudi E, Aïssa P, Essid N, Beyrem H (2015) Effects of increasing levels of pharmaceutical penicillin G contamination on structure of free living nematode communities in experimental microcosms. Environ Toxicol Pharmacol 40(1):215–219CrossRefGoogle Scholar
  55. Nunes B, Carvalho F, Guilhermino L (2004) Acute and chronic effects of clofibrate and clofibric acid on the enzymes acetylcholineesterase, lactate dehydrogenase and catalase of the mosquitofish, Gambusia holbrooki. Chemosphere 57:1581–1589CrossRefGoogle Scholar
  56. Obst U, Schwartz T, Volkmann H (2006) Antibiotic resistant pathogenic bacteria and their resistance genes in bacterial biofilms. Int J Artif Organs 29:387–394Google Scholar
  57. Platt H (1977) Ecology of free-living marine nematodes from an intertidal sandflat in Strangford Lough, Northern Ireland. Estuar Coast Mar Sci 5:685–693CrossRefGoogle Scholar
  58. Platt HM, Warwick RM (1983) Free living marine nematodes: Part I. British enoplids. In: Synopses of the British Fauna No. 28. Cambridge University Press, CambridgeGoogle Scholar
  59. Platt HM, Warwick RM (1988) Free living marine nematodes: Part II. British Chromadorids. In: Synopses of the British Fauna No. 38. E.J. Brill, LeidenGoogle Scholar
  60. Pomati F, Castiglioni S, Zuccato E, Fanelli R, Vigetti D, Rossetti C, Calamari D (2006) Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environ Sci Technol 40:2442–2447CrossRefGoogle Scholar
  61. Sandulli R, De Nicola-Giudici M (1990) Pollution effects on the structure of meiofaunal communities in the Bay of Naples. Mar Pollut Bull 21:144–153CrossRefGoogle Scholar
  62. Sandulli R, De Nicola-Giudici M (1991) Responses of meiobenthic communities along a gradient of sewage pollution. Mar Pollut Bull 22:463–467CrossRefGoogle Scholar
  63. Schratzberger M, Warwick RM (1998) Effects of intensity and frequency of organic enrichment on two estuarine nematode communities. Mar Ecol Prog Ser 164:83–94CrossRefGoogle Scholar
  64. Schratzberger M, Rees HL, Boyd SE (2000) Effects of simulated deposition of dredged material on structure of nematode assemblages - the role of burial. Mar Biol 136:519–530CrossRefGoogle Scholar
  65. Semprucci F, Balsamo M (2012) Free-living Marine Nematodes as bioindicators: past, present and future perspectives. Environ Res J 6(1):17–36Google Scholar
  66. Semprucci F, Colantoni P, Baldelli G, Rocchi M, Balsamo M (2010a) The distribution of meiofauna on back-reef sandy platforms in the Maldives (Indian Ocean). Marine Ecol 31:592–607CrossRefGoogle Scholar
  67. Semprucci F, Boi P, Manti A, Covazzi Harriague A, Roc-chi M, Colantoni P, Papa S, Balsamo M (2010b) Benthic communities along a littoral of the Central Adriatic Sea (Italy). Helgoland Marine Res 64:101–115CrossRefGoogle Scholar
  68. Semprucci F, Colantoni P, Sbrocca C, Baldelli G, Rocchi M, Balsamo M (2011) Meiofauna in sandy back-reef platforms differently exposed to the monsoons in the Maldives (Indian Ocean). J Mar Syst 87:208–215CrossRefGoogle Scholar
  69. Semprucci F, Moreno M, Sbrocca S, Rocchi M, Albertelli G, Balsamo M (2013) The nematode assemblage as a tool for the assessment of marine ecological quality status: a case-study in the Central Adriatic Sea. Mediterr Mar Sci 14:48–57CrossRefGoogle Scholar
  70. Semprucci F, Frontalini F, Sbrocca C, Armynot du Châtelet E, Bout-Roumazeilles V, Coccioni R, Balsamo M (2015a) Meiobenthos and free-living nematodes as indicators at the time of the water framework directive, a study case in the Adriatic Sea. Environ Monit Assess 187:251CrossRefGoogle Scholar
  71. Semprucci F, Losi V, Moreno M (2015b) A review of Italian research on free-living marine nematodes and the future perspectives in their use as Ecological Indicators (EcoInd). Mediterr Marine Sci 16(2):352–365Google Scholar
  72. Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissma NDB (2004) Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci Total Environ 329:99–113CrossRefGoogle Scholar
  73. Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants-I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225:81–90CrossRefGoogle Scholar
  74. Tietjen JH (1977) Population distribution and structure of the free-living nematodes of long Island Sound. Mar Biol 43:123–136CrossRefGoogle Scholar
  75. Vanaverbeke J, Bezerra TN, Braeckman U, De Groote A, De Meester N, Deprez T, Derycke S, Gilarte P, Guilini K, Hauquier F, Lins L, Maria T, Moens T, Pape E, Smol N, Taheri M, Van Campenhout J, Vanreusel A, Wu X, Vincx M (2015) NeMys: World database of free-living marine nematodesGoogle Scholar
  76. Vitiello P, Dinet A (1979) Définition et échantillonnage du méiobenthos. Rapport Commission International pour l’Exploration Scientifique de la Mer Mediterranee 25/24, pp 279–283Google Scholar
  77. Vitiello P, Dinet A (1979b) Définition et échantillonnage du méiobenthos. Rapp Comm Int Mer Médit 25:279–283Google Scholar
  78. Vulliet E, Cren-Olivé C (2011) Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environ Pollut 159:2929–2934CrossRefGoogle Scholar
  79. Warwick RM, Clarke KR (1991) A comparison of some methods for analyzing changes in benthic community structure. J Mar Biol Assoc UK 71:225–244CrossRefGoogle Scholar
  80. Warwick RM, Price R (1979) Ecological and metabolic studies on free-living nematodes from an estuarine mud-flut. Estuar Coast Mar Sci 9:257–271CrossRefGoogle Scholar
  81. Warwick RM, Carr MR, Clarke KR, Gee JM, Green RH (1988) A mesocosm experiment on the effects of hydrocarbon and copper pollution on a sublittoral soft-sediment meiobenthic community. Mar Ecol Prog Ser 46:181–191CrossRefGoogle Scholar
  82. Warwick RM, Platt HM, Somerfield PJ (1998) Free living marine nematodes. Part III. British Monhysterida.Synopses of the British fauna no 53. Field Studies Council, ShrewsburyGoogle Scholar
  83. Wieser W (1953) Die Beziehung zwischen Mundhoehlengestalt, Ernaehrugsweise und Vorkommen bei freilebenden marinen Nematoden. Zool Arch 4:439–484Google Scholar
  84. Yoshida M, Hamdi H, Abdulnasser I, Jedidi N (2002) Contamination of potentially toxic elements (PTEs) in Bizerte lagoon bottom sediments, surface sediment and sediment repository. In: Ghrabi A, Yoshida M (eds) Study on environmental pollution of Bizerte Lagoon. INRST-JICA Publishers, Tunisia, pp 13–48Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ahmed Nasri
    • 1
    Email author
  • Soufiane Jouili
    • 1
  • Fehmi Boufahja
    • 1
  • Amor Hedfi
    • 1
  • Ibtihel Saidi
    • 1
  • Ezzeddine Mahmoudi
    • 1
  • Patricia Aïssa
    • 1
  • Naceur Essid
    • 1
  • Beyrem Hamouda
    • 1
  1. 1.Laboratory of Environment Biomonitoring, Faculty of Sciences of Bizerta (FSB)University of CarthageZarzounaTunisia

Personalised recommendations