, Volume 25, Issue 6, pp 1105–1118 | Cite as

Silver toxicity across salinity gradients: the role of dissolved silver chloride species (AgCl x ) in Atlantic killifish (Fundulus heteroclitus) and medaka (Oryzias latipes) early life-stage toxicity

  • Cole W. Matson
  • Audrey J. Bone
  • Mélanie Auffan
  • T. Ty Lindberg
  • Mariah C. Arnold
  • Heileen Hsu-Kim
  • Mark R. Wiesner
  • Richard T. Di Giulio


The influence of salinity on Ag toxicity was investigated in Atlantic killifish (Fundulus heteroclitus) early life-stages. Embryo mortality was significantly reduced as salinity increased and Ag+ was converted to AgCl(solid). However, as salinity continued to rise (>5 ‰), toxicity increased to a level at least as high as observed for Ag+ in deionized water. Rather than correlating with Ag+, Fundulus embryo toxicity was better explained (R2 = 0.96) by total dissolved Ag (Ag+, AgCl2 , AgCl3 2−, AgCl4 3−). Complementary experiments were conducted with medaka (Oryzias latipes) embryos to determine if this pattern was consistent among evolutionarily divergent euryhaline species. Contrary to Fundulus data, medaka toxicity data were best explained by Ag+ concentrations (R2 = 0.94), suggesting that differing ionoregulatory physiology may drive observed differences. Fundulus larvae were also tested, and toxicity did increase at higher salinities, but did not track predicted silver speciation. Alternatively, toxicity began to increase only at salinities above the isosmotic point, suggesting that shifts in osmoregulatory strategy at higher salinities might be an important factor. Na+ dysregulation was confirmed as the mechanism of toxicity in Ag-exposed Fundulus larvae at both low and high salinities. While Ag uptake was highest at low salinities for both Fundulus embryos and larvae, uptake was not predictive of toxicity.


Fundulus heteroclitus Silver Ionoregulation Bioavailability Salinity Na+ balance 



We would like to thank Dr. Bryan Clark for his laboratory assistance; Drs. David Hinton and Kevin Kwok for providing medaka embryos, and Dr. Jason Unrine of the University of Kentucky for ICP-MS assistance. This material is based upon work supported by the National Science Foundation (NSF) and the Environmental Protection Agency (EPA) under NSF Cooperative Agreement EF-0830093 and DBI-1266252, Center for the Environmental Implications of NanoTechnology (CEINT). Additional support was provided by NSF (CBET-1066781). Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF, or the EPA. This work has not been subjected to EPA review and no official endorsement should be inferred. The authors also thank the CNRS for funding the iCEINT consortium.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arnold WR, Cotsifas JS, Winter AR, Klinck JS, Smith DS, Playle RC (2007) Effects of using synthetic sea salts when measuring and modeling copper toxicity in saltwater toxicity tests. Environ Toxicol Chem 26:935–943. doi: 10.1897/06-215r1.1 CrossRefGoogle Scholar
  2. Auffan M et al (2014) Salinity-dependent silver nanoparticle uptake and transformation by Atlantic killifish (Fundulus heteroclitus) embryos. Nanotoxicology 8:167–176. doi: 10.3109/17435390.2013.869627 CrossRefGoogle Scholar
  3. Barriada JL, Tappin AD, Evans EH, Achterberg EP (2007) Dissolved silver measurements in seawater. Trends Anal Chem 26:809–817. doi: 10.1016/j.trac.2007.06.004 CrossRefGoogle Scholar
  4. Bielmyer GK, Brix KV, Grosell A (2008) Is Cl protection against silver toxicity due to chemical speciation? Aquat Toxicol 87:81–87. doi: 10.1016/j.aquatox.2008.01.004 CrossRefGoogle Scholar
  5. Blanchard J, Grosell M (2005) Effects of salinity on copper accumulation in the common killifish (Fundulus heteroclitus). Environ Toxicol Chem 24:1403–1413. doi: 10.1897/04-373r.1 CrossRefGoogle Scholar
  6. Blanchard J, Grosell M (2006) Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: is copper an ionoregulatory toxicant in high salinities? Aquat Toxicol 80:131–139. doi: 10.1016/j.aquatox.2006.08.001 CrossRefGoogle Scholar
  7. Brauner CJ, Wilson J, Kamunde C, Wood CM (2003) Water chloride provides partial protection during chronic exposure to waterborne silver in rainbow trout (Oncorhynchus mykiss) embryos and larvae. Physiol Biochem Zool 76:803–815CrossRefGoogle Scholar
  8. Burnett KG et al (2007) Fundulus as the premier teleost model in environmental biology: opportunities for new insights using genomics. Comp Biochem Physiol Part D-Genomics Proteomics 2:257–286CrossRefGoogle Scholar
  9. Bury NR, Hogstrand C (2002) Influence of chloride and metals on silver bioavailability to Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) yolk-sac fry. Environ Sci Technol 36:2884–2888. doi: 10.1021/es010302g CrossRefGoogle Scholar
  10. Bury NR, Galvez F, Wood CM (1999) Effects of chloride, calcium, and dissolved organic carbon on silver toxicity: comparison between rainbow trout and fathead minnows. Environ Toxicol Chem 18:56–62CrossRefGoogle Scholar
  11. Clark BW, Matson CW, Jung D, Di Giulio RT (2010) AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus). Aquat Toxicol 99:232–240. doi: 10.1016/j.aquatox.2010.05.004 CrossRefGoogle Scholar
  12. Copeland DE (1950) Adaptive behavior of the chloride cell in the gill of Fundulus heteroclitus. J Morphol 87:369–379. doi: 10.1002/jmor.1050870208 CrossRefGoogle Scholar
  13. Dutton J, Fisher NS (2011) Salinity effects on the bioavailability of aqueous metals for the estuarine killifish Fundulus heteroclitus. Environ Toxicol Chem 30:2107–2114. doi: 10.1002/etc.600 CrossRefGoogle Scholar
  14. Fritz ES, Garside ET (1974) Salnity preferences of Fundulus heteroclitus and F. diaphanus (Pisces: Cyprinodontidae): their role in geographic distribution. Can J Zool 52:997–1003CrossRefGoogle Scholar
  15. Galvez F, Wood CM (1997) The relative importance of water hardness and chloride levels in modifying the acute toxicity of silver to rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 16:2363–2368CrossRefGoogle Scholar
  16. GFMS (2011) The future of silver industrial demand. GFMS Limited, The Silver Institute, LondonGoogle Scholar
  17. Griffith RW (1974) Environment and salinity tolerance in the genus Fundulus. Copeia 1974:319–331CrossRefGoogle Scholar
  18. Grosell M, Hogstrand C, Wood CM, Hansen HJM (2000) A nose-to-nose comparison of the physiological effects of exposure to ionic silver versus silver chloride in the European eel (Anguilla anguilla) and the rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 48:327–342. doi: 10.1016/s0166-445x(99)00029-6 CrossRefGoogle Scholar
  19. Guadagnolo CM, Brauner CJ, Wood CM (2000) Effects of an acute silver challenge on survival, silver distribution and ionoregulation within developing rainbow trout eggs (Oncorhynchus mykiss). Aquat Toxicol 51:195–211CrossRefGoogle Scholar
  20. Hogstrand C, Wood CM (1998) Toward a better understanding of the bioavailability, physiology and toxicity of silver in fish: implications for water quality criteria. Environ Toxicol Chem 17:547–561. doi: 10.1897/1551-5028(1998)017<0547:tabuot>;2 CrossRefGoogle Scholar
  21. Hogstrand C, Wood CM, Bury NR, Wilson RW, Rankin JC, Grosell M (2002) Binding and movement of silver in the intestinal epithelium of a marine teleost fish, the European flounder (Platichthys flesus). Comp Biochem Physiol C-Toxicol Pharmacol 133:125–135CrossRefGoogle Scholar
  22. Jung D et al (2011) Genotoxicity in Atlantic killifish (Fundulus heteroclitus) from a PAH-contaminated Superfund site on the Elizabeth River, Virginia. Ecotoxicology 20:1890–1899. doi: 10.1007/s10646-011-0727-9 CrossRefGoogle Scholar
  23. Karnaky KJ (1986) Structure and function of the chloride cell of Fundulus heteroclitus and other teleosts. Am Zool 26:209–224. doi: 10.1093/icb/26.1.209 CrossRefGoogle Scholar
  24. Katoh F, Shimizu A, Uchida K, Kaneko T (2000) Shift of chloride cell distribution during early life stages in seawater-adapted killifish, Fundulus heteroclitus. Zool Sci 17:11–18. doi: 10.2108/zsj.17.11 CrossRefGoogle Scholar
  25. Laurent P, Chevalier C, Wood CM (2006) Appearance of cuboidal cells in relation to salinity in gills of Fundulus heteroclitus, a species exhibiting branchial Na+ but not Cl uptake in freshwater. Cell Tissue Res 325:481–492. doi: 10.1007/s00441-006-0187-3 CrossRefGoogle Scholar
  26. Levard C, Hotze EM, Lowry GV, Brown GE (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914. doi: 10.1021/es2037405 CrossRefGoogle Scholar
  27. Lowry GV et al (2012) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46:7027–7036. doi: 10.1021/es204608d CrossRefGoogle Scholar
  28. Matson CW, Clark BW, Jenny MJ, Fleming CR, Hahn ME, Di Giulio RT (2008) Development of the morpholino gene knockdown technique in Fundulus heteroclitus: a tool for studying molecular mechanisms in an established environmental model. Aquat Toxicol 87:289–295. doi: 10.1016/j.aquatox.2008.02.010 CrossRefGoogle Scholar
  29. Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85:3036–3049. doi: 10.1021/ac303636s CrossRefGoogle Scholar
  30. McGeer JC, Playle RC, Wood CM, Galvez F (2000) A physiologically based biotic ligand model for predicting the acute toxicity of waterborne silver to rainbow trout in freshwaters. Environ Sci Technol 34:4199–4207. doi: 10.1021/es9912168 CrossRefGoogle Scholar
  31. Nacci DE, Champlin D, Jayaraman S (2010) Adaptation of the estuarine fish Fundulus heteroclitus (Atlantic killifish) to polychlorinated biphenyls (PCBs). Estuar Coast 33:853–864. doi: 10.1007/s12237-009-9257-6 CrossRefGoogle Scholar
  32. Niyogi S, Wood CM (2004) Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38:6177–6192. doi: 10.1021/es0496524 CrossRefGoogle Scholar
  33. Notch EG, Shaw JR, Coutermarsh BA, Dzioba M, Stanton BA (2011) Morpholino gene knockdown in adult Fundulus heteroclitus: role of SGK1 in seawater acclimation. PLoS One 6:e29462. doi: 10.1371/journal.pone.0029462 CrossRefGoogle Scholar
  34. Notch EG et al (2012) Mitogen activated protein kinase 14-1 regulates serum glucocorticoid kinase 1 during seawater acclimation in Atlantic killifish, Fundulus heteroclitus. Comp Biochem Physiol A: Mol Integr Physiol 162:443–448. doi: 10.1016/j.cbpa.2012.04.025 CrossRefGoogle Scholar
  35. Patrick ML, Wood CM (1999) Ion and acid-base regulation in the freshwater mummichog (Fundulus heteroclitus): a departure from the standard model for freshwater teleosts. Comp Biochem Physiol A: Mol Integr Physiol 122:445–456. doi: 10.1016/s1095-6433(99)00030-6 CrossRefGoogle Scholar
  36. Patrick ML, Part P, Marshall WS, Wood CM (1997) Characterization of ion and acid-base transport in the fresh water adapted mummichog (Fundulus heteroclitus). J Exp Zool 279:208–219. doi: 10.1002/(sici)1097-010x(19971015)279:3<208:aid-jez2>;2-r CrossRefGoogle Scholar
  37. Powers CM, Yen J, Linney EA, Seidler FJ, Slotkin TA (2010) Silver exposure in developing zebrafish (Danio rerio): persistent effects on larval behavior and survival. Neurotoxicol Teratol 32:391–397. doi: 10.1016/ CrossRefGoogle Scholar
  38. Prodocimo V, Galvez F, Freire CA, Wood CM (2007) Unidirectional Na+ and Ca2+ fluxes in two euryhaline teleost fishes, Fundulus heteroclitus and Oncorhynchus mykiss, acutely submitted to a progressive salinity increase. J Comp Physiol B 177:519–528. doi: 10.1007/s00360-007-0150-y CrossRefGoogle Scholar
  39. Purcell TW, Peters JJ (1998) Sources of silver in the environment. Environ Toxicol Chem 17:539–546. doi: 10.1002/etc.5620170404 CrossRefGoogle Scholar
  40. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108CrossRefGoogle Scholar
  41. Sampaio LA, Bianchini A (2002) Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichthys orbignyanus. J Exp Mar Biol Ecol 269:187–196. doi: 10.1016/s0022-0981(01)00395-1 CrossRefGoogle Scholar
  42. Schecher WD (2001) MINEQL+: A Chemical Equilibrium Program for Personal Computers, 4.5 edn. Environmental Research Software, Hallowell, MEGoogle Scholar
  43. Scott GR, Schulte PM (2005) Intraspecific variation in gene expression after seawater transfer in gills of the euryhaline killifish Fundulus heteroclitus. Comp Biochem Phys A 141:176–182. doi: 10.1016/j.cbpb.2005.05.002 CrossRefGoogle Scholar
  44. Scott GR, Richards JG, Forbush B, Isenring P, Schulte PM (2004) Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am J Physiol Cell Physiol 287:C300–C309. doi: 10.1152/ajpcell.00054.2004 CrossRefGoogle Scholar
  45. Scott GR, Claiborne JB, Edwards SL, Schulte PM, Wood CM (2005) Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport. J Exp Biol 208:2719–2729. doi: 10.1242/jeb.01688 CrossRefGoogle Scholar
  46. Scott GR, Schulte PM, Wood CM (2006) Plasticity of osmoregulatory function in the killifish intestine: drinking rates, salt and water transport, and gene expression after freshwater transfer. J Exp Biol 209:4040–4050. doi: 10.1242/jeb.02462 CrossRefGoogle Scholar
  47. Scott GR, Baker DW, Schulte PM, Wood CM (2008) Physiological and molecular mechanisms of osmoregulatory plasticity in killifish after seawater transfer. J Exp Biol 211:2450–2459. doi: 10.1242/jeb.017947 CrossRefGoogle Scholar
  48. Shaw JR, Wood CM, Birge WJ, Hogstrand C (1998) Toxicity of silver to the marine teleost (Oligocottus maculosus): effects of salinity and ammonia. Environ Toxicol Chem 17:594–600. doi: 10.1897/1551-5028(1998)017<0594:tosttm>;2 CrossRefGoogle Scholar
  49. Shen WP, Horng JL, Lin LY (2011) Functional plasticity of mitochondrion-rich cells in the skin of euryhaline medaka larvae (Oryzias latipes) subjected to salinity changes. Am J Physiol Regul Integr Comp Physiol 300:R858–R868. doi: 10.1152/ajpregu.00705.2010 CrossRefGoogle Scholar
  50. Smith RM, Martell AE (1993) Critical stability constants of metal complexes database, v. 2.0 edn. National Institute of Standards and Technology, GaithersburgGoogle Scholar
  51. Taylor MH, DiMichele L, Leach GJ (1977) Egg stranding in the life cycle of the mummichog, Fundulus heteroclitus. Copeia 1977:397–399CrossRefGoogle Scholar
  52. Unrine JM, Colman BP, Bone AJ, Gondikas AP, Matson CW (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1: Aggregation and dissolution. Environ Sci Technol 46:6915–6924. doi: 10.1021/es204682q CrossRefGoogle Scholar
  53. Webb NA, Shaw JR, Morgan J, Hogstrand C, Wood CM (2001) Acute and chronic physiological effects of silver exposure in three marine teleosts. Aquat Toxicol 54:161–178. doi: 10.1016/s0166-445x(01)00150-3 CrossRefGoogle Scholar
  54. Wills LP, Matson CW, Landon CD, Di Giulio RT (2010) Characterization of the recalcitrant CYP1 phenotype found in Atlantic killifish (Fundulus heteroclitus) inhabiting a Superfund site on the Elizabeth River, VA. Aquat Toxicol 99:33–41. doi: 10.1016/j.aquatox.2010.03.015 CrossRefGoogle Scholar
  55. Wood CM (2011) Rapid regulation of Na+ and Cl flux rates in killifish after acute salinity challenge. J Exp Mar Biol Ecol 409:62–69. doi: 10.1016/j.jembe.2011.08.009 CrossRefGoogle Scholar
  56. Wood CM, Marshall WS (1994) Ion balance, acid-base regulation, and chloride cell function in the common killifish, Fundulus heteroclitus—a euryhaline estuarine teleost. Estuaries 17:34–52CrossRefGoogle Scholar
  57. Wood CM, Playle RC, Hogstrand C (1999) Physiology and modeling of mechanisms of silver uptake and toxicity in fish. Environ Toxicol Chem 18:71–83. doi: 10.1897/1551-5028(1999)018<0071:pamomo>;2 CrossRefGoogle Scholar
  58. Wood CM, McDonald MD, Walker P, Grosell M, Barimo JF, Playle RC, Walsh PJ (2004) Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the gulf toadfish (Opsanus beta). Aquat Toxicol 70:137–157. doi: 10.1016/j.aquatox.2004.08.002 CrossRefGoogle Scholar
  59. Yin L et al (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367. doi: 10.1021/es103995x CrossRefGoogle Scholar
  60. Yue Y, Behra R, Sigg L, Fernández Freire P, Pillai S, Schirmer K (2015) Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition. Nanotoxicology 9:54–63. doi: 10.3109/17435390.2014.889236 CrossRefGoogle Scholar
  61. Zimmer AM, Brauner CJ, Wood CM (2014) Exposure to waterborne Cu inhibits cutaneous Na+ uptake in post-hatch larval rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 150:151–158. doi: 10.1016/j.aquatox.2014.03.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Cole W. Matson
    • 1
    • 2
  • Audrey J. Bone
    • 2
    • 3
  • Mélanie Auffan
    • 2
    • 4
    • 5
  • T. Ty Lindberg
    • 3
    • 7
  • Mariah C. Arnold
    • 3
  • Heileen Hsu-Kim
    • 2
    • 6
  • Mark R. Wiesner
    • 2
    • 6
  • Richard T. Di Giulio
    • 2
    • 3
  1. 1.Department of Environmental Science, Center for Reservoir and Aquatic Systems ResearchBaylor UniversityWacoUSA
  2. 2.Center for the Environmental Implications of NanoTechnology (CEINT)Duke UniversityDurhamUSA
  3. 3.Nicholas School of the EnvironmentDuke UniversityDurhamUSA
  4. 4.Aix-Marseille Université, CNRS, IRD, CEREGE UM34, UMR 7330Aix en ProvenceFrance
  5. 5.GDRi iCEINT, International Consortium for the Environmental Implication of NanotechnologyParisFrance
  6. 6.Civil and Environmental EngineeringDuke UniversityDurhamUSA
  7. 7.National Ecological Observatory NetworkBoulderUSA

Personalised recommendations